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THE COMPLETENESS OF THE ORTHOGONAL SYSTEM OF THE

HOUGH FUNCTIONS

by

Peter Holl

SUMMARY

It is shown that the differential equation of Hough functions has
simple real eigenvalues with the only limit-point at infinity for any
given combination of parameters. The eigenfunctions form a complete
orthogonal system in the Hilbert space of real-valued square-summable
functions LZ(—l, +1). 1In certain cases, physically corresponding to
oscillations with periods less than one~half sidereal day, the eigen-

values are non-negative,

INTRODUCTION AND FORMULATION OF THE PROBLEM

The solutions of Laplace's tidal equation for the rotating spherical
earth (Hough functions) have for a long time played only a secondary
role in the theoretical investigations of the tides. This was, on the
one hand, due to the difficulties in computing the functions numerically
with sufficient accuracy; on the other hand, the erroneous opinion
existed that the general behavior of the solutions could be deduced
from the known properties of Sturm-Liouville systems., An additional
reasonwas the limited applicability of the Hough functions in the compu-
tation of oceanic tides. However, during the last twenty years, a large

field of applications developed for the Hough functions in connection



with atmospheric tides. This subject became even more important when
the importance of tidal phenomena in the high atmosphere was recognized.
Hough (1) was the first to succeed in integrating Laplace's tidal
equation by series of spherical surface harmonics, after other methods
had been found to be either unsatisfactory or unsuccessful. Therefore,
Siebert (2,2a) called these functions, which thus had become amen-
able to numerical calculations, Hough functions, a name which is today
generally used. They have been recently studied theoretically and also
computed numerically extensively by Flattery (3) and Longuet-Higgins(4).
The Hough functions satisfy the following differential equation:

A (1—u do\ 1 (B Ll B
(1) El?(fz—;ﬁ zi) =ty pts)0+p0=0,

a1, 0<fl<oo, 1=0,1,2,...

The detailed derivation of this equation and its connection with the
theory of atmospheric tides is discussed by Kertz (5) and Siebert (6).
The parameter £ determines the zonal dependence of the complete solution
of the tidal equations on the sphere. The quantity f is. essentially

the frequency of the oscillations. If £ and f are given, the numbers

B are eigenvalues to be determined, if one requires that the solutions

8 of equation (1) in the closed interval 1 =[—l, +l] are finite. The
eigenfunctions 6 form an orthogonal system for fixed values of 2 and f,
as for instance shown by Flattery (3).

The question which remained unanswered in the previous investi-
gations is whether the system of Hough functions is also complete. In
fact, Lindzen (7) is of the opinion that this is not the case. The
familiar theorems of the theory of self-adjoint eigenvalue problems

cannot be applied to equation (1) because the coefficients of the



ion

differential equation have singularities at the limit points of the
interval I and possibly also in its interior.
It is possible to prove the completeness of the system of Hough

functions in the following manner. The eigenvalue problem is changed,

by means of the formalism of the Green's function, into an integral

equation; and it is shown that the integral operator which appears
is linear, self-adjoint, and completely continuous in the Hilbert space
of functions which are square-integrable over the interval I. We

consider the following parameter combinations:

OUl>1L1+0, @Ifl<t, l0; @ [fl=11+0;
@ll+1,1=0  @lf|=11=0.

CASE 1

Since If' > 1, no singularities appear in the interior of I. We
consider the singular behavior of the solutions at the points u = *+ 1.
We have here, according to the familiar theorems of the theory of
differential equatiomns, regular singular points. The exponent of the

. s . 2 .
singularities at u = *+ 1 is o = + =, The solutions can be expanded

2
into the following series in the vicinity of p = +1 and p=-1:
(2]
WP = (u— ) ¥ ax(u — DX
(2a) £=0

Wi = 4 Wi log (1 — 1) + (s — 1) 3 bue(u — D)X

and:

WD = (4 + 1 3 ax(u + )

(2b) ' E=0 o
Wit = 4 Wi log (u + 1) + (4 + )7 3 B + D)%,



These functions are regular in the interior of I. Their behavior

)

at the boundary points p = *1 is as follows: Wl is proportional

/2

to (u—l)2 at ¢ = +1, thus also regular. For the point p = -1,

two possibilities exist: (a) W (1) is regular at p = -1. This will be

1
denoted as an exceptional case and considered separately. (b) wl(l) is

irregular at p = -1. Then it can be written as a linear combination
of W -1 and W (_l). At y = +1 the sum T a (u—l)K behaves as
1 2 K
K=0
/2

(u +1)—2 Thus we have:

(3a) wp = (A1) i,

-1 is regular at p = -1. If this

(1)
1

where rl is continuous in I. wl

4 D

1 would be proportional to W ; but

were also true at y = +1,

this is impossible since Wl(l) has a singularity at pu = +1. Thus at
_ ® — K -2/2

u = +1 the sum Z aK(u + 1) behaves as (u-1) . It follows that
K=0
7(- - 1\42

(3b) Wi = (Fi‘) r2(u),

where r2 is also continuous in I.

By means of W (1 and W -1) the Green's function G of the

1 1

eigenvalue problems can now be constructed in the usual way. G is

symmetric in the arguments since the problem is self-adjoint:

(4) G(,u; /2)_ ((l‘+1

With the aid of G the eigenvalue problem may be formulated as an integral

equation:

(5) B [ Gu ) 0()dfi=0(u) = FRO)-
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ral

Within the meaning of functional analysis, we consider (5) as
operator equation in the Hilbert space of functions which are square-
integrable over I. It requires no explanation that the integral
operator ® is linear and self-adjoint. We shall show that $ is com-
pletely continuous. To prove this we have to show {cf. Schmeidler 81,

that the integral

+1 +1

(6) 1821 = J [ 16w Aduag
does exist. With equation (4) the norm of the operator ® in equation

(5) becomes: . R

5] = jdﬂ[ri(/ﬁ%(’?—?—i)l- frs(m-(”*i)'du
-1 :

A1/ r—1
#1053 oo (154 0]

&
The mean value theorem of integral calculus is applicable to the in-

terior integrals. We obtain:

+1

1 ” n g4 1) (i— 1N

182 == f d#[r%(/t)-fﬁ(uo(#)) ((”,Wz)—("_—l—)
1

i— i - 4
» ]

—1=Su <4, pm; =< +1.

The integrand is continuous in I. Consequently, || 82| does exist. Now

the following theorem holds {cf. Schmeidler (8)}:

Every completely continuous self-adjoint linear operator
not identically zero possesses a finite or infinite number of
real eigenvalues B, with a finite multiplicity. The B, have no
finite point of accumulation. The associated eigenvectors 6
form an orthogonal system. This orthogonal system can be ex-
tended to a complete orthogonal system in Hilbert space by the
addition of the null solutions.

As we saw, in the case considered here the Green's function does
exlut,  Theretore the set of zero solutions s empty.

All the eigenvalues are simple: otherwise there would be two
linearly independent solutions, which would be regular in the interval

I. But this would be a contradiction to the fact that there is always



a solution with a singularity at p = +1 or y = -1.

We consider now the exceptional case (a): i.e., the possibility

that W (1 (1)

1 is regular at u = ~-1. Then W2

has to be irregular at
W = -1 because there must be a solution which is irregular at p = -1,
as shown by equation (2). This implies two things. First, 8 = 0 is
an eigenvalue. Second, there is no Green's function for the eigen-
value problem. However, according to Courant-Hilbert (9) a Green's
function of a more generalized type can be constructed. This is done

by determining the Green's function not from the homogeneous differen-

tial equation (1), but from the following equation:

d {1—u® dG* 1 12 1 24 u? - , .
®) i @) et ) 6T = PR PR,

G* is determined uniquely if we postulate that
+1
(9) fl G*(p, i) WP (u) dpe = 0

holds together with the usual continuity and discontinuity postulates.
Our eigenvalue problem can now be formulated as an integral equation
which has a form analogous to equation (5).

Since the problem (1) is self-adjoint, it can be shown {for in-
stance, Courant-Hilbert (9)}, that G* is also symmetrical in the
arguments.

In our case W (1) can be written in the following form:

1
(10) Wit = [(p— D)l + )2 (u),

where rl is continuous in I. Evidently it is true that:

Wi = O, WY + C, Wi,




e

Consequently, 2

permits the following representation:

(11) Wi = (u—1)72ry(u) + (& 4 1)74275(p),

with r, and ;2 being continuous functions in I. The Wronskian of a

fundamental system of solutions of the homogeneous differential equation
belonging to equation (8) has the following form because of Abel's
identity:

2

2
(12) A

The general solution of (8) is obtained by variation of parameters:

(13) = AW 4 4,0 4w [T IER g,
0
g [ ERU 0T g,

To construct the Green's function G* we choose a solution which

is regular at p = -1:

g = . f Wib2(,) IV‘” Ndu — W f Wi )W“’(/I)W‘”(/t )d,u'.

With the aid of the mean value theorem of integral calculus
and the equations (10) and (11), we find for y_ the following repre-
sentation:
(14) y-= (ﬁj—l)mt (g)-

n—1

As the solution regular at y = +1 we choose:

+1 +1
D (1 7 U2 T ()
.= Wi f Wi () IVW(.“) W )d ’ H,rél, . Kx (WH)n 1_(/i_) d//
0

In a similar manner as before, we find

—1\U2
(15) y+=(ll:+1) T+(:u)
The functions r, and r_ arecontinuous in I. From (14) and (15) it

is apparent that G* has the same form as G in equation (4). The



operator which appears in the integral equation is thus completely con-
tinuous also in the exceptional case. The theorem quoted above is
again applicable. However B = 0 1s an eigenvalue. The appropriate
null solution is to be added to the orthogonal system so that it
becomes complete. Lindzen (7) did not do that in his arguments
presented above and concluded, therefore, that the system is incomplete.
Our method of concluding that the eigenvalues do not degenerate
remains valid also in the exceptional case considered presently.
It can be shown {Flattery (3)} that the case 8 = 0 occurs only
if the following holds:
(16) f=ﬁ(n—l+1—) n=12,....

The corresponding null solutions have the form:

(17) 60 = ba () + ey Bhaa Phaa (),

L SEi&l&E:&l__ d P2 are the associated Legendre functions.
where Rn = (2ﬂ+1) (21’1—1) an n

To conclude the Case 1 it will be shown that the eigenvalue

problem is positive semi-definite. We multiply (1) by 6 and integrate

from -1 to +1:

+1 -
(18) e [[/12::2 m*/* (st T ) 0 ldn

=—p f Bzdy..
-1
The existence of the integrals follows from (3) and (4). The first
term in (18) disappears, also if lfl >1 and ¢ = 0, as can be seen from
the arguments in Case 4. If f >+1, then the integrals in (8), having

always real values, are not negative. Consequently, 8 > 0. This




con- holds also for f <-1 and 2 = 0. If & > 2, we can show that

+1
. A 1 f*4 42
K__.[f“—ﬂ’ (1—-# 1 = /tz)d‘u<0

and therefore B > 0. To see this, consider that according to (3)

and (4) the Hough functions for & # O may be written:
0 = r(u) (1 — w2,

where r is regular in I. With the aid of the mean value theorem

lete.
. of integral calculus;
K:__Vfwm) 11-f1 1;Tﬂ) ﬁﬁ 1—#;)dy,
—1 gy < —1.
Therefore:
: K 2 258% (1 — gy (2 — 3 - — )
If 2 > 2 the last term is positive.
We consider now briefly the case £ = 1. 1In the vicinity of
W = -1, we assume that the Hough function is developed according to
ons. powers of ¢ = y +1. Then:
0=C-(1—p)2(1l +a,(u+1)+---).
Except for quantities which are small compared to €, equation (1)
te becomes: o
—B0 = |4+ (P D] e <0,
Therefore, here too B > 0.
CASE 2
Since now lfl <1 the differential equation (1) has singularities
ym ‘ at the points p = *f in the interior of the interval I. However,

' all the solutions are regular there {Flattery (3)}. We have thus
merely apparent singularities. Consequently, all the arguments remain

valid which we have used in Case I concerning the Green's functions.
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Thus, here too Hough functions form a complete orthogonal system to-
gether with the null solutions. However, the eigenvalues need no
longer be positive. The integrands in equation (18) change their sign.
As a matter of fact, many authors, especially Dikii (10), Lindzen (11),

and Kato (12), have found negative eigenvalues.

CASE 3

Now |[f| = 1 and & # 0. The differential equation (1) has the

form:

(19) 0" — s (£ L1+ )0 + 50 = 0.

The values u = *1 are again regular singular points. If f = +1, the
exponents of the singularities are a; = %v+1 and &, =-—§-; likewise
for £ = -1, a; = %—and a, = L—%-. Considerations analogous to those

of Case I can be applied to the present situation. The form of the
solutions assumed for the equations (2) is valid here, too, since the

exponents aleuuiazdiffer by an integer. Only in the case of f = -1,

2 = 1 one has to note that o, = o

1 , and therefore the singular

-1
2 2
behavior of the solutions is characterized by a logarithmic term. The

conclusion that the Green's functions G and G¥ are square-integrable

still holds. Therefore, the completeness theorem is applicable.

CASE 4
Here Ifl #1, 2 = 0. The differential equation (1) may now be

written
1_1 ’1
(20) (=0} +p0=0.

e

The exponents of the singularities @ and o, coincide and are equal to



to-

w

The

11

zero. ©§ = const. is always an eigenfunction; that is 8 = Q is always
an eigenvalue. We have to construct a Green's function in the more
general sense. The fundamental solutions of the homogeneous differ-

ential equation have the form
W1=A
-1 AN
W2=B(y +L ]Ogl_”)—r-C.

(21)
The functions required for the construction of G* can be written in

analogy to equation (13):

W) Wa () Wi (8)
1 ﬁ, du.

o

i 5 Wi () W, (2
(22) y=AW,+BW2+sz——‘(—”v)f,o‘—(md/t——Wlf

Specifically
y-=log (1—up)-r_(u) +C_,

yy =log (1 +p)-ri(u) +C4,

where r and r+ are continous functions in I. The Greens' function G

has the following form:

r(u)log (1 —p) +ri(f) -log (1 + (1) +C, p < fi
ro(p)log (1 +p) +7_(4) -log (1 — f) + C, p = fi.

The square-integrability of G* follows from these expressions, thus

(23)  G*(y, 4) ={
completing the proof.

CASE 5
This case (]fl =1, & = 0) was already considered by Solberg (13).

It is degenerate inasmuch as the differential equation has no

singularities in the interval I. We have to require as boundary

conditions:
do
—(+1)=0.
(24) (D ¥
The eigenvalues are then Bn =<%T> and the eigenfunctions:

(25) o, — sin (VBap) n=1,3,5,...
" cos(Vﬁﬂp) n=20,2486,...
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It is known that this system too is complete.

Summarizing, one may say: the differential equation of the
Hough functions has for each given parameter ¢ > 0 and |f] > 0 simple
real eigenvalues B, which have nowhere a finite point of accumulation.
For |f! > 1, 1t is always true that [ > 0. The corresponding
eigenfunctions‘constitute a complete orthogonal system in the Hilbert
space formed by the functions which are square-integrable in the inter—

val -1 < u < +1.
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