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ABSTRACT

A potential pseudodensity principle is derived for the quasi-static primitive equations on the sphere. An
important step in the derivation of this principle is the introduction of ‘‘vorticity coordinates’’ —that is, new
coordinates whose Jacobian with respect to the original spherical coordinates is the dimensionless absolute
isentropic vorticity. The vorticity coordinates are closely related to Clebsch variables and are the primitive
equation generalizations of the geostrophic coordinates used in semigeostrophic theory. The vorticity coordinates
can be used to transform the primitive equations into a canonical form. This form is mathematically similar to
the geostrophic relation. There is flexibility in the choice of the potential function appearing in the canonical
momentum equations. This flexibility can be used to force the vorticity coordinates to move with some desired
velocity, which results in an associated simplification of the material derivative operator. The end result is
analogous to the way ageostrophic motions become implicit when geostrophic coordinates are used in semi-

geostrophic theory.

1. Introduction

Quasigeostrophic theory can be mathematically for-
mulated as two equations—a predictive equation for
the quasigeostrophic potential vorticity and a diagnos-
tic invertibility relation to obtain the balanced wind and
mass fields from the quasigeostrophic potential vortic-
ity. In the predictive equation there is no vertical ad-
vection and the horizontal advection is geostrophic.
This simplicity of the quasigeostrophic formulation,
combined with the fact that the invertibility relation
contains a linear elliptic operator, has proven valuable
in establishing a powerful theoretical formalism for the
quasigeostrophic system.

Semigeostrophic theory lies closer to the primitive
equations than does quasigeostrophic theory. It in-
cludes horizontal ageostrophic advection, vertical ad-
vection, twisting, and nonlinear stretching effects in the
vorticity equation and is thus able to yield fairly ac-
curate simulations of fronts and jets. Even with these
additional effects, semigeostrophic theory, if appropri-
ately formulated, can also be written as a closed system
of two equations—a predictive equation for the poten-
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tial pseudodensity and a diagnostic invertibility relation
to obtain the associated balanced wind and mass fields
[see McWilliams and Gent (1980) for a theoretical dis-
cussion; Schubert et al. (1989) and Fulton and Schu-
bert (1991) for applications of the f-plane theory; Sal-
mon (1983, 1985, 1988a,b), Shutts (1989), and Mag-
nusdottir and Schubert (1990, 1991) for the B-plane
and spherical cases]. The term ‘‘appropriately formu-
lated’’ is equivalent to saying that the combined use of
isentropic and geostrophic coordinates is essential to
making both the vertical advection and the horizontal
ageostrophic advection implicit. Only then can semi-
geostrophic theory take essentially the same mathe-
matical form as quasigeostrophic theory. The predic-
tive variable is potential pseudodensity, which is in-
versely proportional to potential vorticity. On the f
plane the potential pseudodensity is simply equal to f
(the Coriolis parameter) divided by the potential vor-
ticity. In contrast, on both the § plane and the sphere,
the geostrophic coordinates enter the definition of the
potential pseudodensity since in these cases the Cor-
iolis parameter is evaluated at the geostrophic latitude.

Although the above semigeostrophic theories are ap-
plicable to a variety of problems such as fronts, jets,
occluding baroclinic waves, and sudden stratospheric
warmings, there are many problems for which the the-
ories are deficient. For example, in tropical cyclones
the curvature vorticity is as important as the shear vor-
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ticity, and the balance is gradient rather than geo-
strophic. However, even in this case, it is possible to
formulate an axisymmetric gradient balanced model
using combined isentropic and potential radius coor-
dinates (Schubert and Alworth 1987). This theory also
reduces to a predictive equation for potential pseudo-
density and an associated invertibility relation. Another
example is the zonally symmetric, balanced model of
the ITCZ and the Hadley circulation, in which case the
use of combined isentropic and potential latitude co-
ordinates leads to the same mathematical structure
(Schubert et al. 1991).

This raises the question, Can we formulate a three-
dimensional generalized global balanced theory' more
accurate than semigeostrophic theory, but which retains
essentially the same mathematical structure of one pre-
dictive equation for potential pseudodensity and one
diagnostic invertibility relation? Obviously, we must
formulate an approximation more general than the geo-
strophic momentum approximation and define trans-
formed coordinates more general than geostrophic co-
ordinates. The present paper is a contribution to this
general line of research. In particular, we will discuss
the transformation of the primitive equations to vortic-
ity coordinates, which makes the advecting velocities
look formally geostrophic, and the derivation of a gen-
eral potential pseudodensity principle. The expression
of the primitive equations in terms of vorticity coor-
dinates naturally introduces the potential pseudodensity
equation as one of four predictive equations. The other
three predictive equations are the two horizontal La-
grangian particle displacement equations and an equa-
tion for the evolution of the first Clebsch potential. We
will explore the advantages introduced into the primi-
tive equations by writing them in vorticity coordinates.
One of the principal advantages of the transformed set
is its close connection to the balanced theories dis-
cussed above. Finally, we will discuss a general struc-
ture for balanced theories.

The derivations are first presented for the shallow-
water equations on an f plane (section 2) and then for
the fully stratified, quasi-static primitive equations on
the sphere (section 3).

2. The shallow-water equations on an f plane

a. Vorticity coordinate transformation of the shallow-
water equations

The shallow-water equations on an f plane can be
written

! Here we use the term *‘balanced theory”’ in a generic sense, that
is, for a broad class of theories that filter transient gravity waves. The
particular ‘‘nonlinear balance models’’ studied by Lorenz (1960),
Chamney (1962), and Gent and McWilliams (1983a,b, 1984) are
members of this class.
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Dr + h(g; + g) = 0, (2.3)

where u# and v are the eastward and northward com-
ponents of the velocity, 4 is the fluid depth,

Dt o et " By 24)
the total derivative, and
ov  Ou
=f+—— .
E=f x B (2.5)

the absolute vorticity.

Now consider a transformation from the coordinates
(x, y, t) to the new coordinates (X, Y, J ), where
= t. The symbol J has been introduced to distinguish
the time derivative at fixed (X, Y) from the time deriv-
ative at fixed (x, y). We require the new coordinates
to be vorticity coordinates in the sense that the Jacobian
of (X, Y) with respect to (x, y) is the dimensionless
absolute vorticity; that is,

L 8X,Y)
C”fa(x,y)'

If we eliminate { between (2.5) and (2.6), the resulting
expression can be rearranged into the form

0 1 aY . 0X
3(-ufen(F )]

15] 1 oY
“_{u—gfli(X—X)E;

Oy
15).4
—(Y—y)<—6x + 1)]}=0.

Thus, the first term in braces can be expressed as Jx/
Oy and the second term in braces by 8y /3x, where
x(x,y, t)is a scalar potential. This results in

(2.6)

(2.7)
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vV =
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We can regard (2.8) and (2.9) as Clebsch representa-
tions of the velocity field (Lamb 1932, p. 248, Seliger
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and Whitham 1968) or as generalizations of the geo-
strophic coordinates. The latter interpretation results
from noting that if u — 9x/0x and v — 9x /0y are
approximated by their respective geostrophic wind
components, and if 9Y/9x ~ 0, 0X/0x ~ 1, 0Y/3y
~ 1, and dX/9y ~ 0, (2.8) and (2.9) in fact reduce to
the geostrophic coordinates X = x + v,/fand ¥ = y
— u,/f. This special case will be discussed further in
section 2c.

To transform the original momentum equations we
now take 3/t of (2.8) and (2.9) to obtain

Ou o Lo, 2
+ax[gh+2(u +v)]

at
_ Ly o%
= et TEa B0
o 90 L,oa, 2
6t+6y[gh+2(u +v):|
0X,Y) Y4
=f— —, (2.11
T oGy 8y &V
where
g?f=gh+l(u2+v2)+?l
2 ot

1 o ., 5
+5f[(X—x) o -y &]. (2.12)

Adding — v to both sides of (2.10) and {u to both
sides of (2.11), then using (2.6) and the original mo-
mentum equations (2.1) and (2.2), we obtain

(o5 ) =0 e
f(g—j%~g—’y‘%—f) g%= . (214)
Together (2.13) and (2.14) imply that
E%=_J§%%, (2.15)
VE%=}§%. (2.16)

Equation (2.15) has been obtained by eliminating DY/
Dt between (2.13) and (2.14), and (2.16) by elimi-
nating DX/Dt between (2.13) and (2.14). Alterna-
tively, one can verify (2.15) and (2.16) by substituting
them into (2.13) and (2.14), and then noting that the
chain rule yields X /0x = (OX/0X)(0X/0x)
+ (0K 10Y)(O8Y/Ox) and 8K /0y = (0K 10X)(OX/

dy) + (0K/8Y)(8Y/dy). Equations (2.15) and-

(2.16) are the canonical shallow-water equations. The
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total time derivative, (2.4), can be written in vorticity
coordinates as

D 17} a 0
U—‘+V‘67

Dt 87

The advantage of (2.17)-over (2.4) is that the horizon-
tal advecting velocity is expressed in terms of deriva-
tives of # by (2.15) and (2.16), which are mathe-
matically analogous to the geostrophic formulas.

To summarize the above discussion: (2.8) and (2.9)
constitute the Clebsch representation of the velocity
field; alternatively, they can be thought of as definitions
of new coordinates that allow us to write.the momen-
tum equations in canonical form, resulting in simplifi-
cations to the total derivative operator.

The governing equation for the absolute vorticity can
be derived from (2.15) and (2.16) or, in the usual way,
from (2.1) and (2.2). It takes the form

%E+C(%+%)=O.

(2.17)

(2.18)

Eliminating the divergence between (2.3) and (2.18)
we obtain

Dh*
Dt

- ()

is the potential thickness (or inverse potential vortic-
ity). The potential thickness is simply the thickness a
fluid column would acquire if the absolute vorticity {
were changed to the constant reference value f.

=0, (2.19)

where

(2.20)

b. Summary of the shallow-water equations in
vorticity coordinates

We can now summarize the previous analysis as fol-
lows. In vorticity coordinates the independent variables
are (X, Y, 7 ) and the transformed governing equations

are
_ (%}%)_lh*, (2.21)

u=hi*{ [§§+ f(X—x)]QX
+[g—;(‘——f<Y y)]gﬁ}ﬁf(lf—y%

(2.22)
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% =, (2.28)

DD": =0. (2.29)

Equations (2.22) and (2.23) are simply the vorticity
coordinate versions of (2.8) and (2.9). To verify that
the x terms in (2.22) come from the first term on the
right-hand side of (2.8) we make use of (2.21) to ob-
tain dx/0x = 9(x, y)/0(x, y) = (hh*)[O(x, y)/
(X, Y)1[0(x, ¥)/9(x, y)] = (h/h*)3(x, y)/9(X,
Y). In a similar fashion we can show that 0Y/0x
= —(h/h*)8y/0X and 8X/3x = (h/h*)8y/FY. To-
gether, these three results confirm that (2.8) transforms
to (2.22). The transformation of (2.9) to (2.23) pro-
ceeds in a similar manner. Equation (2.26) is derived
by combining (2.8), (2.9), and (2.12). Taken to-
gether, (2.21)—(2.29) constitute a system of nine
equations for the six diagnostic variables &, u, v, &,
U, V and the four prognostic variables x, x, y, h*, with
the total derivative given in (X, Y, J ) space by (2.17).
Obviously, an additional relation is required. If the ad-
ditional relation is simply a definition of #', and if this
definition is inserted between (2.23) and (2.24), then
the time evolution of the prognostic fields x, x, y, h*
can be found by sequential calculations in the order
given.

In fact, we have some freedom in choosing the ad-
ditional relation. For example, the choice # = 0 leads
to the conclusion that DX/Dt = U = 0 and DY/Dt
= V = 0; that is, the vorticity coordinates move with
the flow so that D/Dt = 3/8J . In addition, the right-
hand side of (2.26) is simplified and we now have three
diagnostic equations, in addition to the four prognostic
equations.
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Another choice is g# = gh + 3(u® + v?). Then, if
we add u times (2.1) to v times (2.2), we obtain D&/
Dt = Oh/0t. If we apply (2.17) to # and use the ca-
nonical equations (2.24) and (2.25), we obtain D#'/
Dt = 0K 10T, so that 0F 10T = Oh/dr; that is, the
local time change of the Bernoulli depth in (X, Y)
space is equal to the local time change of the physical
depth in (x, y) space.

In passing, we should keep in mind three interesting
features of the transformed system (2.21)-(2.29).
First of all, the system consists of four predictive equa-
tions rather than three, as in the original shallow-water
equations (2.1)-(2.3). The additional prognostic
equation is due to the fact that (2.27) and (2.23) ex-
plicitly determine coordinate trajectories. This trajec-
tory information is not directly available from the so-
lutions of the Eulerian equations (2.1)—(2.3), but is
of course implicit in the form of the material derivative
(2.4). The second interesting feature of (2.21)—(2.29)
is the natural way in which the predictive equation for
potential thickness emerges. The third interesting fea-
ture is the freedom in choosing how the vorticity co-
ordinates move. This last feature is useful in the deri-
vation of balanced models through approximation of
the primitive set (2.21)-(2.29). One such balanced
model is the semigeostrophic model, which we now
discuss.

¢. Reduction to semigeostrophic theory

Let us now discuss the approximations of (2.21)-
(2.29) that lead to the geostrophic momentum equa-
tions and semigeostrophic theory. Recalling our free-
dom in the choice of #, let us choose g# = gh
+ 3(u? + v2), where (u,, v,) = (g/f)(—Oh/dy, Oh/
Ox) are the geostrophic wind components. Let us ap-
proximate (2.22) and (2.23) by (u,, v} = f(y - ¥, X
— x), which, along with the choice of #, allow us to
express the geostrophic wind as (u,, v,) = (U, V)
= (g/fY(—OK19Y, 0#10X). When X = x + v,/fis
used in the canonical equation (2.15)and ¥ = y — u,/
fis used in the canonical equation (2.16), we obtain
Du,/Dt — fo + gOh/0x = 0 and Dv,/Dt + fu + gOh/
8y = 0, the equations of the geostrophic momentum
approximation. This suggests that other approximate
dynamical systems can be obtained by leaving the ca-
nonical equations (2.15) and (2.16) unchanged but ap-
proximating the Clebsch representations (2.22) and
(2.23). The restrictions on the form of these approxi-
mations as well as the form of a suitable definition of
H are the subject of current research. An important
point to make is that the above approximation proce-
dure guarantees potential vorticity conservation. To see
this, note that, as long as the canonical equations
(2.15)—(2.16) are not distorted, the absolute vorticity
equation (2.18) is unchanged. Then, as long as the
mass continuity equation (2.3) is not distorted, the po-
tential vorticity principle is unchanged. We will discuss
approximate systems further in sections 3b and 3c.
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The most succinct way of expressing semigeo-
strophic theory is as a prognostic equation for A* and
a diagnostic equation or invertibility principle to obtain
# from h*, with both relations expressed in (X, Y, J)
space. The invertibility relation is obtained by substi-
tuting x = X — (g/fHH, y =Y — (g/f*>) Ay and h
=X — (gl2f*) (K% + #})into (2.21), resulting in

L[, OHN(,, OFH\ [ PHY
f“{<f gaxl)(f gaY?) (gaan)}

8 [(OZN (9 N] _,«
X{%‘zfzuax)*(m)]}""
(2.30)

The predictive equation (2.29) can also be written as

on* _ g d(h*, K)
8T  f 0(X,Y)

Thus, shallow-water f-plane semigeostrophic theory
consists of the predictive equation (2.31) for the po-
tential thickness and the diagnostic equation (2.30)
from which we obtain & from A*. In (X, Y) space the

- advecting velocity for A* is given in terms of #. In
this way the ageostrophic motions remain implicit in
the coordinate transformation.

The original derivation of semigeostrophic theory
(Hoskins 1975) was based on approximations to the
momentum equations (2.1) and (2.2). A novel ap-
proach based on a variational principle was later used
by Salmon (1983, 1985, 1988a,b) and Shutts (1989).
An elegant aspect of this variational method is that ap-
proximations are introduced into Hamilton’s principle
in such a way that symmetries, and hence correspond-
ing conservation laws, are preserved. In a related de-
velopment and as an extension of the work of Cullen
etal. (1991), Roulstone and Norbury (1994) have pro-
posed a Hamiltonian approach that leads to a symplec-
tic algorithm (Sanz-Serna and Calvo 1994) for calcu-
lating solutions to the semigeostrophic equations. In
contrast, the approach we have taken here uses the
transformed shallow-water equations (2.21)-(2.29)
as the basis of approximation. This has the advantage
of removing some of the mystery concerning the origin
of the geostrophic coordinates.

Several recent studies have helped clarify our un-
derstanding of the accuracy of the semigeostrophic
equations in comparison to the more accurate nonlinear
balance models mentioned in footnote 1. With primar-
ily oceanographic applications in mind, Allen et al.
(1990a,b) and Barth et al. (1990) have presented a
thorough analysis of the accuracy of the semigeo-
strophic model and several other intermediate models.
Their results illustrate that, when comparing interme-
diate models, there is no guarantee that models with
better conservation properties will produce more ac-
curate solutions. In two related atmospheric studies,

(2.31)
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Snyder et al. (1991) have pointed out the systematic
differences between semigeostrophic and primitive
equation simulations of baroclinic waves, while Whita-
ker (1993) has demonstrated the high accuracy of the
nonlinear balance model for such baroclinic waves.

In passing we note that the semigeostrophic approx-
imation is only one of many possible approximations
to (2.21)-(2.29). In fact, higher-order approxima-
tions are a subject of important current interest (e.g.,
Allen 1991; Mclntyre and Norton 1994; Salmon 1993,
personal communication; Warn et al. 1994). Our re-
sults indicate that, although such higher-order approx-
imations lead to more complicated invertibility rela-
tions, they can be formulated in such a way as to retain
the same predictive equation for 2* and the same form
(2.24)—(2.25) for the advecting velocity.

d. Comments on arbitrariness in the Clebsch
representation

There is a certain arbitrariness to the system (2.21) ~
(2.29) in the sense that the representation (2.8)—(2.9)
is not the only representation leading to (2.6). To see
this, note that a minor rearrangement allows (2.8) and
(2.9) to be written as

ax

_9X ey ,
u=—"-f¥-y (28")

ax [7).4
v=-—-f(Y—y)—+f(X—x), (29’

By Y-y 3y A ), (297
where ¥ = x + 3 f(X — x)(Y — y). If % is redefined
as a new Y, then we obtain a different representation
that also satisfies (2.6). This new representation leads
to a somewhat different transformed set, but the orig-
inal shallow-water equations (2.1)~(2.3) can still be
recovered from it. Similarly, (2.8) and (2.9) can also
be written as

_ 9% SRN) SO "
= o + f(X —x) o fX—y), (2.8")
_%' _ _aY_ ”
v = +f(X —x) By’ (2.9"

where ¥ = x — 3 f(X — x)(Y — y). If ¥ is redefined
as a new x, then we obtain a third representation re-
sulting in (2.6). A further discussion of this point can
be found in Eckart (1960). We can regard (2.8)—(2.9)
as the definitions of the vorticity coordinates (X, Y) in
terms of u, v, and x. Our choice of (2.8)-(2.9) was
in part motivated by the desire to represent both direc-
tions on the f plane equally.

3. The quasi-static primitive equations in spherical '
coordinates

a. Vorticity coordinate transformation of the
primitive equations

Let us now generalize the shallow-water f~plane re-
sults of the previous section to the fully stratified prim-
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itive equations on the sphere. Rather than using poten-
tial temperature as the vertical coordinate, we use spe-
cific entropy s = ¢, In(T/T,) — R In(p/p,), where the
pressure p and the absolute temperature T are related
to the density p by the ideal gas law p = pRT and where
the subscript 0 denotes a constant reference value. The
use of specific entropy rather than potential temperature
results in a somewhat simpler hydrostatic equation, the
right-hand side of which is simply the temperature
rather than the Exner function. Using latitude ¢ and
longitude \ as horizontal coordinates, we can write the
quasi-static primitive equations as

%E +ns — Cv
+—-_6-—— M+l(u2+v2) -0, (3.1)
a cos¢ON 2 , .
P it :
ot &+ Qu + 8¢[M+ (u>+v )]
(3.2)
oM
B D (33)
Do Ou d(vcosg) . B\ _ :
Dt + or(a cosd)a)\ a COS¢6¢ 6s> =0, (34)

where (u, v) are the zonal and meridional components
of the wind, 0 = —9p/ds is the pseudodensity in s
space, M = ¢,T + gz the Montgomery potential,

D 6 7] N 7] +s2 a5y
Dt 6t acos¢6)\ va@d) * 9s ’
the total derivative, and
Ov Ou
& C)—( e 5 2 sing
v O (u cos¢)
* acospON a cos¢6¢> - 36)

We will now switch from the coordinates (\, ¢, s,
t) to the new coordinates (A, ®, S, J), where S = s
and J = t. The symbols S and J are introduced to
distinguish derivatives at fixed (A, ®) (i.e., 8/9S and
8189 ) from derivatives at fixed (A, ¢) (i.e., 3/0s and
0/0t). We require the new coordinates to be vorticity
coordinates in the sense that

ad(A, sin®) ad(A, sind)

(& n, £) =20 sin@(

9(db,s) cosdd(s,\)’
O(A, sin@)) .G

A(N, sing)
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If we equate the third entries of (3.6) and (3.7), we
obtain an expression that can be rearranged in several
ways, one of which is

a0
AN

9(sin*® + sin’e)
od

[v——Q (A-)\)

+ = Qa(sm2<I> — sin’¢}) 6¢]

1 6(sin2<I>_)
84) [u cos¢ Q (A-N) £
+ 1 Qa(sin® — sin’g) W] =0. (38)

Thus, the first term in brackets can be expressed as 9/
ad¢ and the second term in brackets by dx/ad\,
where x(\, ¢, s, t) is a scalar potential. This results in

i 2,
ucos¢—%+29 (A—A)a(—%}@
— 1 Qa(sin®® — sin2g) 2B M)
2Qa(sm<1> sin“¢) N , (3.9)

_ o _
3 Loa(a — )

d(sin’® + sin’p)
o6

_1 2% — cin2eyy 2D
2Qa(s1n<I> sm(f))ad).

C

(3.10)

Using (3.9) and (3.10) we can show that the first two
entries of (3.7) are satisfied if

O(sin*®)

_Ox 1,
0="25+ 5% (A~ N =

JOs

L Qar(sin®® — sin) 22, (3.11)

2 Os
Since it does not contribute to either of the first two
entries in (3.7), the scalar potential x should not be
interpreted as the velocity potential in the usual stream-
function—velocity potential decomposition of the hor-
izontal wind field.

Just as in the shallow-water case of the previous sec-
tion, (3.9)~(3.11) can be regarded as a Clebsch rep-
resentation of the velocity field. The uniqueness dis-
cussion of section 2d also applies to the stratified case
given in (3.9)—(3.11). The zero on the left-hand side
of (3.11) is due to the fact that in the quasi-static sys-
tem only the horizontal components of velocity appear
in the right-hand side of (3.6). In 2 more general non-
hydrostatic argument (in the z coordinate) the vertical
velocity would contribute to the first two vorticity com-
ponents in (3.6) and would also appear on the left-hand
side of (3.11). The zero on the left-hand side of (3.11)
can then be understood in terms of the neglect of the
contribution of vertical motion to the kinetic encrgy in
the variational principle for the quasi-static equations.
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We can interpret the spherical geostrophic coordi-
nates used by Magnusdottir and Schubert (1991) as an
approximate form of (3.9)—(3.10). Similar to the f-
plane case in the previous section, we first approximate
u cos¢ — Ix/ao\ by u, cos® and v — Ix/ad¢ by v,.
Then, we assume that 9A/OX =~ 1, 0P/O\ =~ 0, OA/Od
~ 0, and 0®/9¢ ~ 1 and, further, for (3.9) and (3.10)
we use the approximations sin® + sing ~ 2 sin® and
sin® cos® + sin¢g cosd ~ 2 sin® cosP. The end result
is A = N + (v,/a2Q sin® cos®) and sin® = sin¢g
— (u, cos®/a2(2 sin®), which are the spherical geo-
strophic coordinates.

Another special case of (3.9) occurs when the flow
is zonally symmetric (i.e., Ox/I\ = 0, 3®/O\ = 0, and
OA/ON = 1). Then, (3.9) reduces to a sin’® = Qa
sin’p — u cos¢ or, equivalently, Qa* cos’® = Qa*
cos?¢ + ua cos, the right-hand side of which is the
absolute angular momentum per unit mass. Thus, in the
zonally symmetric case, ¢ is an angular momentum
coordinate and represents the latitude to which a parcel
must be moved in order to change its zonal velocity to
zero. This ‘‘potential latitude’” coordinate has proved
useful in studies of the ITCZ and the Hadley circulation
(Hack et al. 1989; Schubert et al. 1991) and will be
further discussed in section 3c.

To transform the original primitive equations (3.1) —
(3.3) we now take 9/0t of (3.9)—(3.11) to obtain

M+—B—[M+-;—(u2+v2):|

ot ad\

= a29 sin@g-(a%,s—i}%{)) %, (3.12)
%+%[M+%(u2+v2):|

= 429 sin® 6;’2;,52‘;1) ) 5(;@ . (3.13)
(—% |:M+%(u2 + vz)]

= a22Q sin® Q%A(,ngl)_) + %{t— , (3.14)
where
./ﬂ=M+%(u2+v2)+_aa_>t(+%9a2(A_Ma(sg;2<I>)

LIPS PP S @
2Qa (sin*® — sin’¢) o (3.15)

Adding (ns — {v) cos¢ to both sides of (3.12), — &5
+ Cu to both sides of (3.13), v — nu to both sides of
(3.14), then using (3.6) and the original momentum
equations (3.1)—(3.3), we obtain
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. 0% DA 0AD®\ , oM
2Q sm<1>< o Dr _ on Dt)a cos® + o = O
(3.16)
89 DA OA DD M
ind{ —— - ——|a? +—=
22 sin (8¢ Dr BqSD)a os® 96 0,
(3.17)
00 DA OA DD\ , _
291@(6 Dt_BsDt>a S<I>-!-(9 =T
(3.18)
Together (3.16) - (3.18) imply that
(2QV sind, —2QU sin®, T)
oM oM oM
- (a cos®OA’ ad®’ BS ) > 319)

where U = a cos®DA/Dt and V = aD®/Dt. The first
entry in (3.19) has been obtained by eliminating DA/
Dt between (3.16) and (3.17), the second entry by
eliminating D®/Dt between (3.16) and (3.17), and the
third entry by substituting the first two into (3.18).
Thus, (3.9)-(3.11) constitute the Clebsch represen-
tation of the velocity field while (3.19) constitutes the
canonical quasi-static equations.

We can easily show that (3.5) can also be written in
(A, ®, 8,9 ) space as
D a U o} 0

Dt 89

.9
acosdar T Vaow TS a5’

(3.20)

where § = § since S = 5. The advantage of (3.20) over
(3.5) is that the horizontal advecting velocity is ex-
pressed in terms of derivatives of . by the first two
entries of (3.19), which are mathematically analogous
to the geostrophic formulas.

As in the shallow-water case, we have some freedom
in the choice of /£, although the choice /4 = 0 is not
available because of the last entry in (3.19). Suppose
we choose M = M + 4 (u® + v?). Then, if we multiply
(3.1) by u and (3.2) by v, we obtain D#/Dt = M/
Ot + $sOM/38s. Applying (3.20) to 4 and using the
first two entries of (3.19), we obtain DA /Dt = oM/
8 + SOMI8S. Since OM /DS = OM/ s, subtraction
of the previous two relations yields 0.4/39 = OM/0t.

The governing equation for the isentropic absolute
vorticity can be derived from (3.1) and (3.2) or, equiv-
alently, from the first two entries in (3.19). In either
case it takes the form

D¢ ou
Dt * C(a cospON

0 g \.
B (5 a cosp O\ o ac‘)d))s’ (3:21)

d(v cosd)
a cosd>8d>)
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Eliminating the isentropic divergence between (3.4)
and (3.21) we obtain

2.[_)—.1 a + 9 + CQ)S“ng
Dt o\ acos¢on  "adp  c0s)’ " ' Bs’
(3.22)

where P = {/o is the Rossby—Ertel potential vorticity.
For adiabatic conditions, the potential vorticity P is
conserved on fluid particles.

Now consider the potential pseudodensity, defined

by
(2(2 sin@)
o* = C o.

The potential vorticity and the potential pseudodensity
are related by Po* = 2{) sin®. The potential pseudo-
density equation, which can be easily obtained from
the potential vorticity equation, takes the form

Da*+ . ou 3(Vcos<I>)+§)§ ~0
Dt "7 \Gcos®oh | acos®d® | 8s)

(3.23)

(3.24)

which has a striking formal similarity to (3.4). In con-
trast to P, note that even in the absence of 3S/9S, o*
is not conserved on fluid particles. The flux form of
(3.24) is particularly convenient. With D/Dt given by
(3.20), the flux form is given by

do*  B(a*U) ' d(a*Vcos®) a(a*s')_o
8T  acos®IN = acosPOB as

(3.25)

This is identical to the form of the potential pseudo-
density equation found in many of the balanced model
studies mentioned in the introduction. Here it has been
derived from the quasi-static primitive equations on the
sphere. An advantage of (3.25) is that the velocity that
accomplishes the flux is simply expressed in terms of
derivatives of .4 by (3.19).

The potential pseudodensity defined by (3.23) can
also be expressed in terms of a Jacobian. To obtain this
Jacobian form we first note that from the definition of
pseudodensity we can write

op O(\, sing, p)

s (M sing, )
__ O(A, sin®, §) d(\, sing, p)
T B(\, sing, 5) A(A, sin®, S)

_ 4 ) (N, sing, p)
— \2Qsin® ) 8(A, sin®, S)

(3.26)

Then, comparing (3.26) with (3.23), we obtain the Ja-
cobian form
(A, sing, p) .
3(A, sind, 5)

0. (3.27)

JOURNAL OF THE ATMOSPHERIC SCIENCES

Vou. 51, No. 22

This ends our discussion of the vorticity coordinate
transformation of the primitive equations. An obvious
direction for future work is the derivation of the vor-
ticity coordinate transformations of generalized bal-
anced models where, unlike the primitive equatior
model, only the o* field need be predicted. The fore-
going primitive equation analysis can serve as a guide
for such balanced model analysis. In the following sub-
section we outline the general structure of such bal-
anced theories.

b. General structure for balanced theories

Balanced models are often obtained by approximat-
ing the original primitive equations (3.1)~(3.4) or, in
Salmon’s and Shutts’s work, by approximating Ham-
ilton’s principle. The vorticity coordinate transforma-
tion of the primitive equations allows us to obtain bal-
anced models through a different approach. This ap-
proach involves leaving the canonical equations (3.19)
unchanged but approximating the Clebsch representa-
tions (3.9) - (3.10). An attractive feature of Salmon’s
and Shutts’s work is that conservation relations are as-
sured for classes of approximations that maintain cer-
tain symmetries in Hamilton’s principle—one example
being the association of particle labeling with potential
vorticity (PV) conservation. The analogue in the vor-
ticity coordinate transformation is that as long as the
canonical equations (3.19) are not distorted, the isen-
tropic absolute vorticity equation (3.21) is unchanged.
Then, as long as the mass continuity equation is not
distorted, the potential pseudodensity and potential vor-
ticity principles are unchanged. This means a wide va-
riety of approximations to (3.9) and (3.10) can be tried
while PV conservation is guaranteed. An example of
such a procedure (zonally symmetric balanced flow) is
discussed below in section 3c. The general structure of
such balanced theories can be seen as follows. First,
write (3.27) in the form

O\ 0 sing op

cosPOA cosPOA cosPOA
[2 0 sing p . ,
55 5 55 +o*=0. (3.28)
O\ J sing Op
oS a8 a8

Using the form of the hydrostatic equation given in the
last entry of (3.19), we can write

p e Y

.29
T,08 (3:29)

so that the third column of the determinant in (3.23)
can be written entirely in terms of /. If approximations
to (3.9) and (3.10), along with a balance assumption,
allow X\ and sing to be expressed in terms of ./, then
(3.28) becomes an invertibility relation relating o* and
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. This invertibility relation and the predictive equa-
tion (3.25) then give a succinct mathematical descrip-
tion of the dynamics. Thus, the pair of equations (3.25)
and (3.28) constitute what might be called the canon-
ical form for balanced models. The hemispherical
semigeostrophic theory of Magnusdottir and Schubert
(1991) has this canonical form.

¢. Zonally symmetric balanced flow

As an example of the approximation procedure dis-
cussed in section 3b, let us consider zonally symmetric
balanced flow. Under the zonal symmetry assumption,
Ox/ON = 0®/O\ = 0 and OA/ON = 1. Under the bal-
ance assumption, the left-hand side of (3.10) is ne-
glected. Equations (3.9)—(3.11) then become

u cos¢ = Qa(sin’*p — sin’d), (3.30)
_Ox O(sin’*® + sin’p)
0 206 + = Q (A=) 96
- = Qa(smzti) - sm2¢) ¢ (3.31)
_ 9 ) J(sin’®)
"~ s *3 Q (A =M s
- 1 0a?(sin?® - sin%p) oA (332
2 s
while (3.15) reduces to
dx ) O(sin*®)
MM+u+a+Q(A )——-——at
ey 2,28 cin? _3_/_\
Zﬂa (sin“® — sin’¢) o (3.33)

Let us now take 3/9¢ of (3.30)-(3.32), and then
proceed in a fashion analogous to that used in obtaining
(3.12)—(3.14). This results in

O(u cosd) y O(u cosg)

o s ~ Cvcos¢
. D
=2Q sm<I>< Dr )a cos®, (3.34)
9 1. 2
§u+a8¢[M+2u]
8® DA O8A DO M
= o &= 22 T
2€) sin <6¢Dt 6¢D) osd + 96"
} (3.35)
o, 0% DA OA DD\ , oM
as s (I)<(9s Dr  0s Dt)a cos® + 5
(3.36)
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Since we are leaving the canonical equations (3.19)
unchanged, (3.16)—(3.18) also remain unchanged
and, under zonal symmetry, the right-hand sides of
(3.34) and (3.35) vanish while the right-hand side of
(3.36) equals T, yielding

Du utand\
Dr (2Q sing + 2 )v =0, (3.37)
. u tang oM
<2Qs1n¢+ - >u+aa¢—0, (3.38)
M _ =T, (3.39)
Os

which are the approximate momentum equations for
the zonal balanced model. Note that another way of
writing the right-hand side of (3.34) is D/Dt(Qa
cos?®) or equivalently, D/Dt(a cos’d + u cosd).
Thus, the vanishing of the right-hand side of (3.34) is
simply a consequence of the conservation of absolute
angular momentum.

To express the entire problem in terms of a predictive
equation for o* and a diagnostic invertibility principle,
we first note that the zonal symmetry assumption re-
duces (3.25) to

da*  B(a*S)
——= =0, 3.40
o7 oS (3:40)
while (3.28) reduces to
d sing dp
Liile L] o
cosPOL cosROP | | . 0. (341)
a sing Op
7N oS

If we choose M = M + }u?, the zonal balance relation
(3.38) can be expressed as

sin?® — sin’p
1 — sin?p

Y
T add’

2Q%a sin® cosq)( (3.42)

which can be solved for sing in terms of /. When the
sing determined from (3.42) and the p determined
from (3.29) are substituted into (3.41), we obtain a
second-order nonlinear partial differential equation re-
lating # to o*. With appropriate boundary conditions,
we can regard this second-order equation as the inver-
tibility relation. Alternatively, we can regard (3.41),
(3.42), and (3.29) as a system of three diagnostic
equations for the three unknowns 4, sing, and p with
given o*.

Solutions of this zonally symmetric balanced model
for intertropical convergence zone (ITCZ) heat sources

have been presented by Schubert et al. (1991). For

typical ITCZ heating patterns the solutions of (3.40)
show the development of a strip of high PV at lower
levels and low PV at upper levels. After only a few
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days of ITCZ convection, significant reversals in the
northward gradient of PV are produced on the poleward
side of the ITCZ at low levels and on the equatorial
side at upper levels. This sets the stage for ITCZ break-
down through combined barotropic—baroclinic insta-
bility. It is interesting to note that, although the merid-
ional motion is not explicit in the system (3.40),
(3.41), (3.42), and (3.29), it can easily be recovered
from solutions of the invertibility principle at consec-
utive times. This can be understood by noting that part
of the output of the invertibility solver is the function
&(®, S), which can be regarded as giving meridional
particle positions.

4. Concluding remarks

The purpose of this paper has been to formulate vor-
ticity coordinates and to derive the potential pseudo-
density equation in order to illuminate a dynamical
structure shared by the primitive equations and a class
of balanced models. All of these models automatically
conserve potential vorticity. One would also expect that
they all possess wave activity conservation laws such
as the primitive equations (Haynes 1988) and the se-
migeostrophic equations (Kushner and Shepherd
1994). The potential pseudodensity equation is closely
related to the potential vorticity equation, but it has
certain advantages. One advantage of potential pseu-
dodensity over potential vorticity involves the behavior
of the two fields across the equator. Since potential vor-
ticity is generally positive in the Northern Hemisphere,
negative in the Southern Hemisphere, and vanishes
near the equator, the isolines of potential vorticity in a
meridional cross section are nearly vertical near the
equator. This means that potential vorticity, which is
so useful in distinguishing tropospheric and strato-
spheric air in midlatitudes, loses this usefulness in the
Tropics. Potential pseudodensity is generally nonneg-
ative, and its isolines in a meridional cross section are
nearly horizontal across the equator. It can be used to
distinguish tropospheric and stratospheric air globally.
A second advantage of potential pseudodensity over
potential vorticity involves the treatment of isentropic
surfaces intersecting the ground using the massless
layer approach. This, of course, is intimately related to
the dynamics of baroclinic waves and fronts. In the
massless layer, potential vorticity is infinite but poten-
tial pseudodensity is zero. This makes potential pseu-
dodensity a more natural variable in calculations with
balanced models that use the massless layer approach.

Of course, there are many applications in which po-
tential vorticity is a more convenient variable than po-
tential pseudodensity. For example, it is more desirable
to work with potential vorticity when considering
wave—mean flow interactions and conditions of stabil-
ity of a basic-state flow and when we are confined to
working in physical coordinates, vorticity coordinates
not being available. The former point is related to the
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fact that for the large-scale flow we are generally con-
sidering Rossby wave interactions, but the restoring
mechanism for Rossby waves involves the gradient of
potential vorticity, the largest component of which is
often the contribution due to the earth’s rotation. The
second point arises because potential pseudodensity is
defined in terms of the latitudinal part of the vorticity
coordinates so that it is essential to have those coordi-
nates available.

We have here used the transformed primitive equa-
tions in two ways—as a basis for balanced approxi-
mations and to illuminate a simple structure for all bal-
anced models. However, the transformed primitive
equations and their associated vorticity coordinates
have potential uses beyond balanced model applica-
tions. For example, geostrophic coordinates have re-
cently been explored for use in objective analysis of
fronts (Desroziers and Lafore 1993). The vorticity co-
ordinates used in the present paper also hold promise
for such applications. In fact, they may be regarded as
the natural coordinates to consider for primitive equa-
tion analysis under highly anisotropic conditions since:
they share the ‘‘stretching property’’ of geostrophic co-
ordinates and they are more general. Several advan-
tages of the transformed primitive equations have al-
ready been mentioned: for example, the way in which
the potential pseudodensity equation arises naturally as
one of the prognostic equations and the way in which
the canonical momentum equations allow the total time:
derivative to be written in simple form where the ad-
vection is expressed solely in terms of derivatives of a
potential. Note that in the fully spherical system, a set
of vorticity coordinates is essential to the definition of
potential pseudodensity; that is, sin® appears in the def-
inition (3.23). Also, even for adiabatic and frictionless
motion, the potential pseudodensity is not necessarily
conserved following a fluid parcel. These two facts dis-
tinguish potential pseudodensity from its close relative,
the potential vorticity. The most intriguing aspect of
the transformed set is its connection to balanced mod-
els. We have seen how semigeostrophic theory can be
obtained from its shallow-water equation equivalent
and how the zonally symmetric balanced model can be:
obtained from the fully stratified transformed equa-
tions. In fact, the transformed set can serve. as the basis
of a whole ensemble of balanced models, for example,
three-dimensional semigeostrophic models and zonally
symmetric or axisymmetric two-dimensional gradient
balanced models. An important topic for future re-
search is the formulation of a three-dimensional bal-
anced model of this class whose balance conditions
clearly go beyond geostrophic balance.
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