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ABSTRACT

We consider the axisymmetric balanced flow occurring in a thermally forced vortex in which the frictional
inflow is confined to a thin boundary layer. Above the boundary layer the absolute angular momentum
fR? = rv + Yafr? is conserved. We refer to R as the potential radius, i.e., the radius to which a particle
must be moved (conserving absolute angular momentum) in order to change its tangential component v to
zero. Using R as one of the dependent variables we feview the equations of the Eliassen balanced
vortex model.

We next reverse the roles of the actual radius r and the potential radius R, i.e., we treat R as an independent
variable and r as a dependent variable. Introducing transformed components (u*, w*) of the transverse
circulation we obtain the transformed Eliassen balanced vortex equations, which differ from the original
equations in the following respects: 1) the radial coordinate is R which results in a stretching of positive
relative vorticity regions and a shrinking of negative relative vorticity regions; 2) the thermodynamic equation
contains only the transverse circulation component w*, the coefficient of which is the potential vorticity g;
3) the equation for r contains only the transverse circulation component u*; 4) the transverse circulation
equation contains only two vortex structure functions, the potential vorticity ¢ and the inertial stability s,
where pg = ({/f)8/00)(36/8Z) and ps = fR*/r".

The form of the transverse circulation equation leads naturally to a generalized Rossby radius proportional
to (g/s)"%. A typical distribution of (g/s)"/? is calculated using the composite tropical cyclone data of Gray.
The fundamental dynamical role of (g/s)"/? is then illustrated with a simple analytical example.
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1. Introduction

The equations which describe the slow, quasi-bal-
anced evolution of a thermally or frictionally con-
trolled axisymmetric vortex were introduced by Elias-
sen (1952). Simplification of these equations and in-
troduction of parameterized cumulus convection
formed the basis of the CISK theories of Ooyama
(1964) and Charney and Eliassen (1964). Eliassen’s
balanced vortex equations were also the basis of sev-
eral nonlinear, numerical, tropical cyclone models
(e.g., Ooyama, 1969a; Sundqvist, 1970). In the past
decade, simulation and prediction efforts have shifted
toward the use of the primitive equations in two and
three dimensions. However, Eliassen’s model contin-
ues to help in understanding the development of trop-
ical vortex flows (e.g., Shapiro and Willoughby, 1982;
Schubert and Hack, 1982) and in interpretation of
research aircraft data on cycles of intensification and
variations in eye diameter (Willoughby et al., 1982).

The purpose of the present work is to derive a new
and somewhat simpler form of Eliassen’s balanced
vortex model. We first review (Section 2) Eliassen’s
model in a form which uses the potential radius R
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(where Y2fR? = rv + %fr?) as one of the dependent
variables and the actual radius r as one of the inde-
pendent variables. In Section 3 we reverse the roles
of R and r, obtaining the transformed Eliassen bal-
anced vortex model. Certain aspects of the trans-
formed model are similar to those of Hoskins’ semi-
geostrophic equations (see Hoskins, 1975; Hoskins
and Draghici, 1977), e.g., the stretching of high vor-
ticity regions and the role of potential vorticity as a
static stability. However, as far as axi-symmetric flows
are concerned, the transformed Eliassen equations are
more general than the semi-geostrophic equations
since the Eliassen equations are valid for the highly
curved flows occurring in tropical cyclones. In Sec-
tion 4 we interpret some of the composite tropical
cyclone data of Gray in terms of the transformed
equations. The simple form of the transverse circu-
lation equation which occurs in the transformed
model leads naturally to a new definition of the
Rossby radius. In Section 5 we present a simple an-
alytical argument which illustrates the important dy-
namical role played by this Rossby radius in the de-
velopment of a tropical cyclone.
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2. Eliassen balanced vortex model

We consider the axi-symmetric, balanced flow oc-
curring in a thermally forced vortex on an f-plane.
We assume that frictional stresses are confined to a
thin boundary layer and thus that the flow above the
boundary layer is frictionless. The effects of friction

on the free atmosphere are then felt through a con- °

dition on the vertical velocity at the top of the bound-
ary layer. In the following we consider separately the
governing equations for thé motion in the free at-
mosphere and the motion in the boundary layer.

a. Motion in the free atmosphere

Using the Hoskins and Bretherton (1972) pseudo-
height coordinate .

[

Do g’
the gradient wind balance, conservation of absolute
angular momentum, hydrostatic balance, mass con-

tinuity and the thermodynamic equatlons can be
written as

PR = rty = r 52 @.1)
. DR
D 0, (2.2)
9% _&
32 o 0, 2.3)
dru  dpw
dr  pdz 0, (2.4
DInd @
Cp D T (2.5)

where u, v, w are the radial, tangential and vertical
-components of velocity, 2fR? = rv + Yafr? is the
absolute angular momentum per unit mass, p = po[l
—(gz/c,h )]““‘”" is the pseudo-density (a known func-
tion of z), T is the temperature, ¢ the geopotential,
D/DT = /3t + ud/or + wd/dz, @ is assumed to be
a specified function of space and time, and subscript
zero denotes a “top of the boundary layer” value. The
potential radius R is the radius to which a particle
must be moved (conserving absolute angular mo-

mentum) in order to change its relative angular mo- -

mentum to zero. We assume that R is real and pos-
. mve

b. Motion in the boundary layer

Following Ogura (1964) and Ooyama (1969a) we

shall assume that in the boundary layer the pressure
gradient force does not vary with height and gradient
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balance exists.! In addition, we assume the layer is
so shallow that we can neglect the variation of pseudo-
density and the local time derivative in the tangential
wind equation. With these assumptions we can write
the tangential wind and continuity equations as

(f + a’”")ku + ¢plvolve = 0, (2.6)

h _ru + wy = 0,
ror

where u is the radial component of velocity in the
boundary layer, vy, and wy are the tangential and ver-
tical components of velocity at the top of the bound-
ary layer, A the depth of the boundary layer and ¢p
the drag coefficient. Ehmmatmg hu between (2.6) and
(2.7) yields

a
Wo = g [}f‘ CD|00|1/2(R0 -r 2):|
where {, is the wvertical component of absolute vor-
ticity at the top of the boundary layer. Eq. (2.8) pro-
vides the necessary lower boundary condition for the
system (2.1)-(2.5).

2.7

(2:8)

.c. Pseudo-conservation relations

The Eliassen balanced vortex model (2.1)-(2.5) is

. a filtered intermediate model (McWilliams and Gent,

1980). It is filtered in the sense that gravity-inertia
waves and the transient aspects of gradient wind ad-

. justment are not included. It is intermediate in the

sense that its accuracy lies somewhere above the
quasi-geostrophic model, but below the primitive
equation model. Because of the inclusion of curvature
effects the Eliassen balanced vortex model also lies
somewhat above the axisymmetric version of the
geostrophic momentum approximation in accuracy.
Just as the geostrophic momentum approximation
is capable of describing many of the nonlinear aspects
of fronts and jets, the Eliassen balanced vortex model
is apparently capable of describing many of the non-
linear aspects of tropical cyclone development. As
pointed out by Hoskins (1975), the equations with
the geostrophic momentum approximation preserve
the forms of the pseudo-conservation relations, for
potential temperature, vector vorticity, Ertel’s poten-
tial vorticity, and energy. A similar result holds for

! Both Ogura (1964) and Ooyama (1969a) acknowledge that the
assumption of gradient wind balance in the boundary layer is crude.
Ooyama (1969b) has shown that more realistic tropical cyclone
simulations can be achieved by using a hybrid model (gradient
balance above the boundary layer and quasi-steady-state primitive
equations in the boundary layer). A similar conclusion (but with
a somewhat different hybrid model) was reached by Peng and Kuo
(1975).
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the Eliassen balanced vortex equations, in which case
the pseudo-conservation relations take the forms:
1) POTENTIAL TEMPERATURE EQUATION
De ( gz )“ Q
— =, where ={1-==] —.
Dt Q < b/ ¢
2) VECTOR VORTICITY EQUATION

D¢

X _ .. 9
YRS V)u+§’Wpaz,

where

ov arv d (R 9 (R?
*‘*(“a’fJfE)—f(‘:a;(‘z")’ﬁ;(?))
and

u = (u, w).

3) ERTEL POTENTIAL VORTICITY EQUATION

Dg g
ot~ oS VO
where
q= £ ¢-Ve.
faop

4) ENERGY EQUATION
D g
—(K+P+ V. = _ <
p D1 ( ) (pug) B, pzQ,

where

and P=—gg-z().

0

K =12

The only difference between the above relations and
those obtained from the primitive equations is the
neglect of 2u? in K and the use of the gradient wind
in the determination of {, g and K.

d. Transverse circulation equation

Although the set (2.1)-(2.5) is closed in the un-
knowns, u, R, w, 6 and ¢, it is not a convenient set
for computation. A computationally convenient set
is one in which either of the prognostic equations
(2.2) or (2.5) is replaced by a diagnostic equation for
the transverse circulation (pu, pw), which, because of
the continuity equation, can be expressed in terms
of the single streamfunction variable ¢ as

o ary

(ou, pw) = (— - ——) 2.9)

3z’ rdr

The diagnostic equation for y is derived by combining
(2.1) and (2.3) to obtain

(2.10)
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and using this “thermal wind equation” to eliminate
local time derivatives between (2.2) and (2.5). The
result is

3 (a2t 52
or (A ror +B 9z
9 (gord %) _ 890
+6Z(B r8r+Caz 6y or’ (2.11a)
where
pA = £ 9% (static stability) (2.11b)
00 62_
g adf
B=—=—
p 00 or
R3 3R
=—f2 == ini 2.11
f 7 3z (baroclinity) (2.11c¢)
R? 4R . -
pC = f*— —— (inertial stability). (2.11d)
r’ or
The boundary conditions for (2.11a) are
¥0,2)=¥Ur,zp) =0
ry >0 as r— w . (211e)

1
ryo = {;Pocuh’ol 5 (Ro2 - r2)

the last of which is easily derived from (2.8) and (2.9).
e. Summary of the balanced vortex model

We can now collect the results (2.10), (2.11), (2.9),
(2.5) and (2.2) applied at z = O to obtain the system
of equations given on the left side of Table 1. A single
step in the numerical integration of (2.12)~(2.19) pro-
ceeds as follows. Knowing 6(r, z) and Ry(r) from an
initial condition or a previous time step we can solve
(2.12) for R(r, z). After using (2.13)-(2.15) to compute
A, B and C, we solve (2.16) for y(r, z). After com-
puting u# and w from (2.17), we predict new values
of 6(r, z) and R(r) from (2.18) and (2.19).

3. Coordinate transformation

We now wish to reverse the roles of r and R, i.e,
we now consider R to be the independent variable
and r the dependent variable. For convenience we
also introduce -7 = t and Z =.z, but we note that
9/0T # 9/dt and 4/3Z # 3/dz since 3/dT and 9/9Z

indicate that R is held fixed. The transformation used

here is an adaptation to the Eliassen balanced vortex
model of transformations which have proved useful
in other problems, primarily frontogenesis. The ad-
vantages of “absolute momentum coordinates” or
“geostrophic coordinates” were pointed out in the
two dimensional frontal studies of Eliassen (1962)
and Hoskins and Bretherton (1972). The generaliza-
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have also been used for flows on both the f-plane and

sphere by Shutts and Thorpe (1978) and Shutts .

(1980), and in an oceanographic context by Gill
(1981) in his study of homogeneous intrusions of
mass in a rotating, stratified fluid.

To transform to these new coordmates we make
use of

d 9 oR d

o or e aR’ G-
0 OR 0

ar ar R’ (-2)
6 6R 6 0 .

62 62 6R t 3z 0z’ (3'3)

From (3. 1)—(3 3) and absolute angular momentum

conservation, it is easily shown that
D_9., 3
Dt aT 9z’

so-that radial advection will not appeaf in the trans-

formed equations. Since the dimensionless vertical

component of absolute vorticity {f~! can be written
as 8(2R?/rdr), we can write (3.2) as

(3.4)
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TABLE 1. Compariéon of the governing equations for the original model and the transformed model.
Eliassen model Transformed Eliassen model
R'OR g od R¥or g o0
? 2.12 P =— 3.23
s r’ az Boér } ( ) f.r3OZ 2] ( )
g 98 f @ (rz)
A =2 — 2.13 ==—\= .24
A= e (2.13) ¢~ RaR \2 (3.24)
__ng__zR_BaR =£§iﬁ_ (325)
i v A e 2.19) P47 ¥b,0
R’ AR R*
.. pROOR . 5= 2 3.26)
oC 3 (2.15) | ps = f*—3 (
M )3y, o) 00 3 (o), 8 (o) 280
ar (A o T Boz) T \Brer T %) T ar ar\"Rar ) "9z\* 3z ) " 4, oR
: ' B.C.¢*(0, 2) = ¥*(R, Zr) = 0, 327
BC.¢(0,2) =¢(r,zr)=0, r¢y —0.as .r—o > (2.16) . (3.27)
Ry*—0 as R— o0,
1
ry(r, 0) f poCD|Uo| = (Ro -r?) RY*R,0) = -3'{— 00 Cplvol 3 (R?* = 1ryd)
0 .
EY) arw) : ( > aR\p*)
=|- =2 17 ow¥) = |-, == 2
(ou, pw) ( 3z’ ror (2.17) (puv , oW®) 3Z ’ ROR (3.28)
a3 6 a6
— 4 = = X —_ 2 » = .
% (pAw + pBu) = Q (2.18) 6T+ paqw Q (3.29)
' Ro 0R0 Rvs 6"0
s 3 o — poBowy + poCottp = 0 (2.19) f? ; aT poSoud =0 (3.30)
tion to three dimensions has been given by Hoskins a4 ¢ 9
(1975) and Hoskins and Draghici (1977). These ideas ror f ROR (3.3)

Eqs. (3.2) and (3.3) can also be combined to obtain

0
V=i, (3.6)

which allows us to write the potentlal vorticity in the
simpler but exact form

g .06

~ foop S0z 3.7

where ¢ is the vertical component of ¢.
In analogy with Hoskins and Draghici (1977) we
define the new components of the transverse circu-

. lation by
or
* — W —
Ruy r(u w 62) (3.8)
w* = j{_ w. (3.9)

Then, using (3.4), (3.8) and (3.7) the tangential wind
equation (2.2) and the thermodynamic equation (2.5)
can be written as
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2
9 (r_) — Ru* = (,

a7 \2 (3.10)
90 B ok _
8T+ < gpw Q. (3.11)

Thus, only the component u* contributes to a change
in the horizontal area within an angular momentum
surface and only the component w* contributes to
a change in potential temperature on the angular
momentum surface.

As in Hoskins’ semi-geostrophic theory the trans-
formed continuity equation can be derived from the
vertical component of the vorticity equation, which
can be written ‘

¢ a¢ dpw
- — —§¢—=0. 12
o " Vaz $paz 0 (3.12)
Using (3.9) this becomes
0 f) dpw*
—|3)+—> =0 1
6T(§‘ * p0Z 0. . (.13)

Applying (3.5) to rv we obtain

o fL, Lo 0 (_)

§ 2]’

Substituting (3.14) into (3.13) and using (3.10) we
obtain the transformed continuity equation

dRu* N dpw* '

ROR  pdZ

which has the same form as (2.4).
Applying (3.3) to r? and using (3.14) we obtain

(3.14)

=0, (3.15)

Using this along with (3.5) we can transform the ther-
mal wind equation? (2.10) to

(3.16)

Since the tendencies of r and 6 from (3.10) and.(3.11)
must be consistent with the thermal wind equation
(3.16), a diagnostic equation for the transverse cir-
culation(pu*, pw*) is implied. This equation is de-
rived by taking the Z derivative of f2R3/r* times
(3.10) and the R derivative of g/, times (3.11), and
using the fact that

21t is also possible to obtain (3.16) by first transforming the
gradient wind and hydrostatic equations. For this purpose it is
convenient to define ® = ¢ + Y2v? = ¢ + %fA(R? — r¥)*r~2. Then
the transformed gradient wind equation becomes Y2 f*R(R? — r?)r—2
= 9®/dR and the transformed hydrostatic equation (g/fo)8
= 0%/0Z, from which-(3.16) immediately follows. When R/r
~ | the above relation for ¢ can be approximated by ® ~ ¢
+ Y2f(R — r)%, which is the form taken in semi-geostrophic theory.
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w2 or) = a1 57)
AaZ\r391) 08T \r*o9z/’

to obtain
] , R? ar) d
— f— —_— + — _ .
aT( 7 az) T az ) =0 (3.17)
d (g 60) ] g 40
— =]+ — ¥y — 2 = .
oT (ao ar) t R W) =g or> G119
where the inertial stability s is given by
R4
ps = f* e (3.19)

Subtracting (3:17) from (3.18) and using (3.16) yields

J ) g 40

— *y _ ) = & X

3R (gpw*) Y (spu*) T
If we make use of (3.15) to define the streamfunction
y* by

i

(3.20)

a* 6R¢/*)
- 21
dZ ’ RO6R)/’ (3-21)

we can write the transverse circulation equation

(3.20) as
I} ORY* d ( og* g aQ
513("?31?)+52(SFZ_)=0_05§’
which is the analogue of (2.11a). The boundary con-
ditions for (3.22a) are
¥*0, Z) = yX(R, Z1) =0

Ry* >0 as R— w

(ou*, pw*) = (

(3.22a)

, (3.22b)°

Ry§ = i pocplvol l (R = rp?)
$o 2

the last of which can be derived from (2.8), (3.5), (3.9)

and (3.21). In numerical calculation the condition

Ry* — 0 as R — oo must be replaced by an ap-

proximate condition at finite R. This is discussed in

the Appendix.

To summarize the transformed model we now col-
lect the results (3.16), (3.14), (3.7), (3.19), (3.22),
(3.21), (3.11) and (3.10) applied at Z = 0. These re-
sults are shown on the right side of Table 1. A single
step in the numerical integration proceeds as follows.
Knowing (R, Z) and ry(R) from an initial condition
or a previous time step we solve (3.23) for r(R, Z).
After using (3.24)-(3.26) to determine ¢ and s we
solve (3.27) for Y *(R, Z). After computing u* and
w* from (3.28) we predict new values of 8(R, Z) and
ro(R) from (3.29) and (3.30). Since r is one of the
dependent variables the transformation of the results
from potential radius R back to actual radius r is
straightforward.

3 Eqgs. (3.23)—(3.30) are given in Table 1.
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Comparing the right side of Table 1 with the left
side we note several ways that the transformed model
differs from the original model: the horizontal coor-
dinate is R rather than r, which results in a stretching
of positive relative vorticity regions and a shrinking
of negative relative vorticity regions; the equation for
6 contains no u* term, the equation for r contains no
w* term, and as a result the transverse circulation
equation (3.27) contains no cross derivative terms;
g plays the role of static stability and s the role of
inertial stability. As long as we are dealing with stable
vortices, we have ¢ > 0 and 5 > 0, in which case
(3.27) is elliptic.

In passing we note that as an alternative to (3.30)
it is possible to derive an integral condition on dr/
dT by multiplying (3.10) by p, integrating over the
depth of the free atmosphere, and using (3.15), (3.21),
the boundary conditions w* = 0 at Z = Zg,
Ru* — 0 and Ry§ — 0 as R — oo to obtain

d [Zrr? .
oaT J, 2 pdZ = Ry,

a statement that the mass within an absolute angular
momentum surface is increasing with time if there
is cyclonic flow at the top of the boundary layer
(R > ro).

(3.31)

4. Tropical cyclone structure in the potential radius
coordinate :

In order to gain a better understanding of the trans-

formed model we now examine typical distributions
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of v(r, 2), WR, Z), R(r, 2), r(R, Z), pq(R, Z),
ps(R, Z) and [q(R, Z)/s(R, Z)}/?. We first examine
observational data composited by William Gray’s
tropical cyclone research group at Colorado State
University. In particular, we use an analytical fit to
the large typhoon composite tangential winds of Mer-
rill (1982). The large typhoon composite is made up
of all tropical cyclones in the northwest Pacific in
which the central pressure was less than 980 mb and
the average radial distance to the outermost closed
isobar exceeded 6° latitude. These large systems com-
prise 36% of all typhoons in the northwest Pacific.

The calculation of potential vorticity requires
knowledge of 8 in addition to knowlege of v. We have
obtained 6 from v by solving the thermal wind equa-
tion (2.12) radially inward, starting from a standard
atmosphere profile of 4 at r = 1500 km. The standard
atmosphere profile which was used is a slightly
smoothed version of the mean tropical clear area
sounding of Gray et al. (1975). The corresponding
profile of N? = (g/6,)(96/9z) is shown in Fig. 1. For
reference the profile of p/p, is also shown.

Isopleths of v(r, z) and v(R, Z) for the large typhoon
composite are shown in Fig. 2. In (r, z) space the
radius of maximum wind is ~100 km. while in
(R, Z) space it is ~375 km. In general, (R, Z) space
provides stretching when v > 0 and shrinking when
v < 0. In Fig. 3 we show the fields of R(r, z) and
r(R, Z). Since the R surfaces are also absolute angular
momentum surfaces one possible interpretation is
that the transverse circulation has swept high absolute

N2 {units of 107%72)

20 25 30
T

- 05 10 15
:
14}
12t
1oF
=t
E 4
~ 8
E ot
s N®
w 6f
I
4}
2-
P Y A

=100

PP, Jaoo

- (QW) 34NSS3ud

4500
4600

4700

-800

-1900
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FIG. 1. The curve p/po = [1 — (gz/cH0))!' ™ gives the vertical variation

_ of the pseudodensity. The curve N? = (g/8,)(86/0Z) gives the vertical

variation of the static stability computed from the mean tropical clear
area temperature profile of Gray et al. (1975).
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FIG. 2. Isopleths of tangential wind v (m s™') in r, z space (top) and R, Z space
(bottom). Note how the potential radius coordinate stretches the region of large cyclonic

vorticity.

angular momentum in at low levels and low absolute
angular momentum out at high levels. Along the dot-
ted lines in Fig. 3 the tangential wmd vanishes and
hence R = r.

According to (3.27) the transverse circulation is
determined by the forcing Q and the vortex structure
functions g and s. The fields of pg(R, Z) and
ps(R, Z) are shown in Fig, 4. The variation of pq is
more than a factor of 50 while that of ps is more than
a factor of 500. It is the inner core region which has
both high “static’’ and ““inertial” stability. In the next
section we shall show that the generalized Rossby
radius, which is proportional to (g/s'/?), is a measure

of the rotational constraint on the cyclone and plays
an important role in development. The field of
(g/s'’®) is shown in Fig. 5. Below 200 mb and inside
600 km the relatively smaller Rossby radii signify a
stronger rotational constraint and a relative tendency
for adjustment of wind to pressure (e.g., Schubert et
al., 1980) As we shall show in the next section, the
terms “strong rotational constraint” and “adjustment
of wind to pressure” are synonymous with “efficient
heating.”

The rawinsonde composite data set used to con-
struct Figs. 2-5 does not resolve the inner core region
of the cyclone. In order to better understand this inner
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FIG. 3. Isopleths of R (km) in r, z space (top) and r (km) in R, Z space (bottom).
Along the dotted lines the tangential wind vanishes so that R = r.

region we present in Fig. 6 isopleths of v(r, z) and

 R(r, z) based on aircraft data collected at five levels |

in hurricane Hilda [see Hawkins and Rubsam (1968)
for an extensive discussion of this hurricane]. We note
that the maximum tangential wind (~45 m s ') lies
at a radius of ~25 km, through which runs the 200
km potential radius surface. Thus, for this case, the
use of R as a coordinate results in an eightfold stretch-
ing of the lower tropospheric inner core region. Inner
region values of the generalized Rossby radius are
approximately one-tenth of the values at large radius.

5. The generalized Rossby radius and the distribution
of local temperature change

In order to understand how ¢ and s influence the
balance of terms in the thermodynamic equation
(3.11), we consider an inviscid situation where ¢ and
s are constants and Q(R, Z) is given by

-~ . (72
OR, Z) = QSI“(ZT)’
0,

, 5.1)
R>R,



WAYNE H. SCHUBERT AND JAMES J. HACK

1579

JUNE 1983
100
14
124
. 200
10
- 300
E 8
=
400
Ne
{500
4 48 40322416 8 4 2 1600
I {700
2-—///
{800
"o . . A P . 1393
(0 200 400 600 800 1000 1200
R (km) -
100
200
~ 3
= 00
=
N 400

- 5l2 256 128 643216 8 4 2 1500
4; {600
ol 709

| {800

9
o el 1 1 " A A 1 D T—
(o) 200 400 600 800 1000 IZC?Og 3
R (km)

FIG. 4. Isopleths of pg (top) in units of N? [where N2 = (1.2 1072 s7!)? is the vertically
averaged value of (g/6,)(06/0Z) at large radius] and ps (bottom) in units of f?

=(5 X 107%s7")2,

where the parameters O and R give the magnitude
and the horizontal scale of the heating. Using (5.1)
in (3.27) and assuming y*(R, Z) = ¥Y*(R) sin(xZ/
Zy) we obtain

av*
d ( R

RIR\R 2R

where u! = (g/5)'?Z/x is the generalized Rossby
radius. Eq. (5.2a) holds in the regions 0 < R < R and
R < R < o0. Across R = R the streamfunction is
continuous so that

) — (WR*+ 1)¥* =0, (5.22)

[¥*]5* = 0, (5.2b)

while the radial derivative of the streamfunction
jumps in such a way that

[dR\II*]R* g0

RdR R— 0061 )

(5.2¢0)

The solution of (5.2a) consists of linear combinations
of the modified Bessel functions /;(uR) and K;(¢R)
in each region. However, the boundary conditions for
R = 0 and R — oo require that we discard K, in the
inner region and I, in the outer region. Then, after
determining the remaining two constants via (5.2b)
and (5.2¢), we obtain ' :
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RK,(uR)I,(uR); R<R R 39
THR) = gQ {RI ;(l;())KlE#R; rRopg ©Y f o RAR s
2 = R 0 5 5
of MBI, S —— = 1 2L WRKER),  (5.4)
If we apply (3.11) at Z = Z4/2, integrate over the f ORdR ‘
0

heated area, and make use of (3.21), we obtain -

fR 9 RdR = f QRdR — 0— R‘I/*(R)
o 0T g

‘Then, using (5.3) and the fact that fR ORdR = 0
X R2/2 when Z = Z;/2, we obtain
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z(k

which is a somewhat simplified (and .transformed)
version of Eq. (3.1) of Schubert and Hack (1982). A
plot of this “efficiency” as a function of R is given
in Fig. 7. The efficiency increases as puR increases. .
Since
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' and (b) R(r, 2) in km for the inner region of Hurricane

Hilda (see Hawkins and Rubsam, 1968).



JUNE 1983 WAYNE H. SCHUBERT AND JAMES J. HACK 1581
|0 1 T T T T T 1 1 I T T T T Ll L I |
R
i f 98 pdR
o oT A A
o8l A = 1-27, (uRIK, (1R) |
f QRdR
0 =
i SUPERTYPHOON
0.6} B
B TYPHOON 7
04} .
- TROPICAL STORM 7
0.2 i
L TROPICAL DEPRESSION -
o 1 1 1 1 1 1t .t l ] 1 1 1 L. 1 1
0.l 05 5 10
A
bR
F1G. 7. A plot of the right hand side of (5.4) as a function of uR.
2v to the labeling shown in Fig. 7, i.e., a steady climb
fr f+ r up the efficiency curve. Thus, the view presented here

#TNZ (fpR

u grows approximately as the square root of the ab-
solute circulation. If the horizontal scale of the heat-
ing remains approximately constant in physical space,
R also grows as the square root of the absolute cir-

culation since
2v 1/2
f+7
’

= r.

f

- Thus, when viewed in the potential radius coordinate
there are two effects which can lead to increased ef-
ficiency—the shrinkage of the generalized Rossby ra-
dius (i.e., increased u) and the growth in the dynamic
size of the heated region (i.e., increased R). Some-
times in tropical cyclone development the angular
momentum surfaces and the “edge” of the highly
convective region both move inward in physical
space. As long as the angular momentum surfaces
move inward faster than the edge of the convective
region, the dynamic size of the heated region in-
creases.

Although u can vary significantly in the convective
region of a tropical cyclone, it is possible to compute
convective region averages of u for various stages of
development. This has been done by G. Holland
(personal communication, 1982) using northwest Pa-
cific composite data sets for different development
stages. Roughly speaking, Holland’s results give rise

R

is that tropical cyclone development is essentially a
nonlinear process* in which an approximately fixed
amount of total latent heat release leads to increasing
uR and increasing local temperature change.

6. Concluding remarks

Using potential radius R as the horizontal coor-
dinate and introducing the new components (u*, w*)
of the divergent flow we have transformed and sim-
plified the Eliassen balanced vortex model. Although
the transformed model has certain similarities with
the two-dimensional semi-geostrophic equations used
in frontogenesis studies, further analytical progress
with it appears to be more difficult. In frontogenesis
studies, one can assume potential vorticity is con-
served so that an initial uniform potential vorticity
field will remain so. Then considerable understanding
of surface fronts can be obtained with the uniform
potential vorticity model or even the zero potential
vorticity model, while upper level fronts can be stud-
ied with the discontinuous potential vorticity model
(Hoskins and Bretherton, 1972). In contrast, the trop-
ical cyclone problem forces us to cope with sources
of potential vorticity and with large variations in both
g and s (which has a simpler form in semi-geostrophic

theory).

4 For a related discussion of the role of nonlinear processes in
tropical storm development the reader is referred to the paper of
QOoyama (1982).
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If numerical methods are to be used, does the trans-
formed model have any advantage over the original
Eliassen model? First of all there is the advantage of
being able to.easily display the results in both (R, Z)
and (7, z) space and to view the transverse circulation
as (u, w) and (1*, w*). Second, the transformed model
can be solved with fewer degrees of freedom in the
horizontal direction because the inner core region is
automatically stretched.

In the past a variety of methods have been used
to solve equations of the form (2.16) or (3.27), e.g.,
successive over-relaxation, alternating direction im-
plicit, and direct methods. Recently, much more ef-
fective multigrid methods (Brandt, 1977) have be-
come available. We are presently irivestigating the use
of multi-grid and spectral methods for the solution
of (3.23)-(3.30).
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. " APPENDIX
Boundary Condition for Eq. (3.21)
When the transverse circulation equation (3.21) is

solved numerically the boundary condition Ry* —
0 as R — oo must be replaced by an approximate

condition at large but finite R. To derive an approx- '

imate condition we follow the general argument de-
veloped by Hack and Schubert (1981) for primitive
equation models. Suppose that at some large R the
vortex is very weak and the heating is negligible so
that r ~ R, { =~ f, pq =~ (g/60)(98/0Z) = N¥(Z) and
Q ~ 0. Then (3.21) becomes

1 4 é)Rw*)' p 0 (w*)
+=—(==])=0, (Al
f2 6R(R6R N2 9Z. pdZ. > (AD
for large R. We now define the vertical finite Sturm-
Liouville transform pair by

zr NYZ)
ot = * Z Z 2
%m)L wmzua)@ﬂi (A2)
VR, Z)= T V¥HRIZZ),  (A3)

n

where Z,(Z) 1s the yet-to-be-determlned kernel of the
transform. -

If we apply the vertical transform (A2) to (A1),
integrate by parts twice, use the upper and lower
boundary conditions ¢ * = 0 at Z = 0, Zr, and require
that the kernel Z,(Z) satlsfy the Sturm-Liouville
problem
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0 {37, N?
—|=)+=2z,=
) ( ) r 0

Z \pdZ ., (Ad)
) Z,=0 at Z=0,Zr
we obtain
aru* av* , o
2 4¥n 2R 4 *
R dR2 + R IR (ur"R ‘ DY =0, (AS)
where u, = f/c,. If we discard the modified Bessel

function solution which grows in R, the solution of
(A5) can be expressed as a constant times the first-
order modiﬁed Bessel function K;(u,R). Since

R dR {RK (1sR)} = —pnKo(unR)

the function of ¥¥(R) obeys
dRY¥(R)
RdR

for large R. If we apply (A6) at some large radius R
and if we then take the inverse transform (A3), we
obtain '

K\(oR) + KolunRITHR) = 0, (A6)

dRy* wnRKo(unR) _ o _
R Z Ki1oR) YHR)ZAZ)
at R=R. (A7)

Since ¥¥* is determined from (A2), the condition (A7)
relates the boundary value of the radial derivative of
Y* at a particular level to the boundary values of
* at all other levels. '
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