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ABSTRACT

The geopotential tendency form of semigeostrophic theory is derived and compared with the potential vorticity
form. The tendency form is compact and particularly convenient for non-Boussinesq, nonuniform potential

vorticity flows.

1. Introduction

By combining the geostrophic momentum approx-
imation (Eliassen, 1948) and the geostrophic coordinate
transformation, Hoskins (1975) and Hoskins and
Draghici (1977) have derived a filtered, three dimen-
sional system of equations (semigeostrophic equations)
which are nearly as simple as the quasi-geostrophic
equations but which apply to more general physical
situations such as fronts, jets, occluding baroclinic
waves, etc. With a specified, height independent de-
formation field, two dimensional versions of the se-
migeostrophic equations (Hoskins, 1971; Hoskins and
Bretherton, 1972) give fairly realistic simulations of
both surface fronts (uniform potential vorticity model)
and upper-level fronts (discontinuous potential vortic-
ity model). In the three dimensional case uniform po-
tential vorticity jet flows develop unstable baroclinic
waves which evolve into the nonlinear regime, pro-
ducing fronts and an occluding warm sector (Hoskins,
1976; Hoskins and West, 1979; Hoskins and Heckley,
1980). Three dimensional nonuniform potential vor-
ticity jet flows produce similar evolution except that

upper tropospheric frontogenesis is more realistic -

(Heckley and Hoskins, 1982).

In this note we derive the “geopotential tendency”
form of semigeostrophic theory. This form is conve-
nient because the ageostrophic circulation remains im-
plicit and only one elliptic equation needs to be solved
each time step. From the computational point of view
integrations of the nonuniform potential vorticity case
become almost as easy as integrations of the uniform
potential vorticity case.

2. Review of semigeostrophic theory

a. Geostrophic momentum approximation

Our starting point is the f~-plane system of equations
with the geostrophic momentum approximation [see
Egs. (1)-(5) of Table 1]. Here we use the pseudo-height
z = [1 — (p/pPo)*Ic,H0/g as the vertical coordinate. The
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pseudo-density p = po[1 — gz/c,0]'~*is then a known
function of z. In (1)~(5), (1, vg) = f ~'(—3¢/3y, 3¢/3x)
are the geostrophic components of the wind, (u,, v,)
the ageostrophic components, and (u, v) = (4, + u,,
v, + v,) the components of the total wind.

Although the derivation is lengthy, it can be shown
that the above system has the three-dimensional vor-
ticity equation

L2 % _ &
i = G VUt W =S kX V6, (6)

where u = (u, v, w), D/Dt = 8/3t + u(d/dx) + v(3/dy)
+ w(d/3z), and
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Combining (6) with the continuity equation (4) and
the thermodynamic equation (5) we obtain the poten-

- tial vorticity equation

Dg_,

Dt ®

where

g
= —=—{.V§.
pbof

b. Semigeostrophic equations
Introducing the geostrophic coordinates

©)

(X3}’:Z’T)=(x+")73’y_gf9zat) (10)

and the potential function
& = ¢+ (u? + ), (1

Hoskins (1975) has shown that the geostrophic and
hydrostatic relations take the form
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TABLE 1. Semigeostrophic theory: Equations.

Geostrophic momentum approximation

Semigeostrophic equations
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while the potential vorticity becomes
(13)

where {is the vertical component of absolute vorticity.
Since D/DT = 0/dT + ug(3/8X) + v,(3/dY) + w(d/
dZ), the horizontal advection is now geostrophic. Then,
introducing the transformed ageostrophic components

w du, fw)

¥ v,

foz "

foz’¢

(k, vF, w¥) =(

(14)

Hoskins and Draghici (1977) showed that (1)-(5) can
be written' as (15)-(19) of Table 1.

Although the system (15)-(19) can be regarded as
closed, it is not convenient for calculation. The ageo-
strophic components (u*, v¥, w*) are implicit and
must be determined in such'a way that the predictions
of (u,, v,) from (15)-(16) and 8 from (19) are consistent
with a continued state of geostrophic and hydrostatic
balance. In Sections 3 and 4 we discuss two alternate
forms of the semigeostrophic equations.

3. Potential vorticity form

From (15) and (16) we can obtain

pfrx2)-r3E-Jo o
where D, = 3/dT + uz(3/0X) + v,(8/dY)and Q = —2g/

00(dv,/dX - VO, dv,/3Y - VO), with V denoting the hor-
izontal del operator in geostrophic space. From (19)
we can also obtain

! Hoskins and Draghici (1977) use the Boussinesq form of (18),
but their analysis easily generalizes to the non-Boussinesq case given
in Table 1.

Since the thermal wind equation [derived from (12)]
can be written

av
kaazg+ OV¢9—0 (22)
(20) and (21) can be added to yield
Vipgw*) — f? o Q. (23)
aZ

Taking the horizontal divergence of (23) and combin-
ing the result with the continuity equation (18) we ob-
tain (24), the w* equation given at the top of the left
column in Table 2.

Using (12)-(14) the conservation of potentlal vor-
ticity can be written as (25). Finally, the relation be-
tween g and ¢, and the thermodynamic equation ap-
plied at the boundaries can be written as (26). Equations
(24)-(26) constitute a closed set in the unknowns &,
g, w*. This is the set discussed by Hoskins (1982, p.
145) and used by Heckley and Hoskins (1982). Nu-
merical integration proceeds in the order given in Table
2. Note that two elliptic equations (one for w*, one
for ®) must be solved each time step.

There is a special case which results in considerable
simplification of (24)—(26). This is the case of uniform
potential vorticity flow. In this case w* need not be
computed from (24), and g in (26) is a constant. Thus,
the whole dynamics reduces to (26). The Boussinesq
approximation (p = constant) leads to even further
simplification. A great deal can be learned about fronts
and baroclinic waves using this Boussinesq, uniform
potential vorticity model (e.g., Hoskins, 1976; Hoskins
and West, 1979).

4. Geopotential tendency form

We now derive the form of semigeostrophic theory
which involves ®r. Since ®1 = ¢, we call this the geo-
potential tendency form.
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TABLE 2. Potential vorticity and geopotential tendency forms of semigeostrophic theory.

Potential vorticity form

Geopotential tendency form
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Addiﬁg d[pf (16)1/0X, d[—pf-(15)]/0Y and [(f?/
q)(g/0o) - (19)]/0Z, then using (12) and (18) we obtain
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Defining

> [ 9 v, S v, )

I ( X -V®, p P53y -V, Y Vo (28)
(27) can be written as Eq. (30) of Table 2. Equation
(26) can now be rearranged to the form given by (29).
Equations (29) and (30) constitute a closed set in &7
and g. Only one elliptic equation needs to be solved
each time step. The ageostrophic circulation remains
entirely implicit. If w* is desired, it can be easily com-
puted from (19) using the known ®7. In the special
case of uniform potential vorticity flow it can be shown
that V- P = 0, so that (26) and (30) become essentially
equivalent.

Equation (30) is somewhat analogous to an equation
derived by Eliassen (1974) in a 6-coordinate type model
with the geostrophic momentum approximation. The
relation between (30) and the potential vorticity equa-
tion (25) has been discussed in the context of Eliassen’s
balanced vortex model (Schubert and Hack, 1983;
Schubert ef al., 1983) by Thorpe (1985).

5. Cbncluding remarks

The main result obtained here is the right-hand side
of Table 2. This geopotential tendency form of semi-
geostrophic theory is compact and allows numerical
integration of non-Boussinesq, nonuniform potential
vorticity flows to be implemented almost as simply as
the Boussinesq, uniform potential vorticity case. The
word “almost” must be used because for the Boussi-
nesq, uniform potential vorticity case the interior part
of (26) can be solved analytically and numerical inte-
gration need be implemented only on the boundary
condition part of (26), as described by Hoskins (1976);
in contrast, the non-Boussinesq, nonuniform potential

vorticity case requires that we numerically solve the
interior part of (30). Although repeatedly solving three
dimensional elliptic problems can be time consuming,
fast multigrid solvers are becoming available. Finally
we note that the distinction between the potential vor-
ticity form and the geopotential tendency form dis-
appears when the additional quasi-geostrophic ap-
proximations are introduced into (1)-(5).
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