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ABSTRACT

We develop here the isentropic—geostrophic coordinate version of semigeostrophic theory on a midlatitude
B-plane. This approach results in a simple mathematical form in which the horizontal ageostrophic velocities
are implicit and the entire dynamics reduces to a predictive equation for the potential pseudodensity and an
invertibility relation. Linearized versions of the theory lead to a generalized Charney-Stern theorem for combined
barotropic-baroclinic instability and to Rossby wave solutions with a meridional structure different from that

in quasi-geostrophic theory.

1. Introduction

By combining the geostrophic momentum approx-
imation and the geostrophic coordinate transforma-
tion, Hoskins (1975) and Hoskins and Draghici (1977)
have derived a filtered, three-dimensional system of
semigeostrophic equations that are nearly as simple as
the quasi-geostrophic equations but that apply to more
general physical situations such as fronts, jets, and oc-
cluding baroclinic waves. One limitation of this form
of semigeostrophic theory is that it does not include a
variable Coriolis parameter. Recently, Salmon (1983,
1985, 1988 ) has shown that Hamiltonian methods can
be used to generate dynamical approximations with
useful conservation properties and that these methods
also suggest transformations to new variables in which
the physics takes a simple mathematical form. As an
application of this approach, Salmon (1985) and Shutts
(1989) have investigated the inclusion of a variable
Coriolis parameter in semigeostrophic theory. In par-
ticular, Shutts has derived an elegant planetary semi-
geostrophic theory, with perhaps the only major as-
sumption being the neglect of the kinetic energy as-
sociated with the component of velocity parallel to the
axis of rotation. The goal of the present paper is to
examine this question of a variable Coriolis parameter
in semigeostrophic theory, not through the use of
Hamiltonian methods, but by more conventional and
elementary methods of analysis. In particular, we pres-
ent semigeostrophic theory on a midlatitude 8-plane
in what we believe is the most elegant and concise ver-
sion—that version which makes simultaneous use of
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isentropic and geostrophic coordinates. With these co-
ordinates, semigeostrophic theory reduces to two
equations—a predictive equation for the potential
pseudodensity and a diagnostic equation (or inverti-
bility principle) whose solution yields the balanced
wind and mass fields from the potential pseudodensity.
In isentropic and geostrophic coordinates the divergent
part of the circulation remains entirely implicit.

The outline of our approach is as follows. In section
2 we present a generalization of the geostrophic mo-
mentum approximation to the midlatitude S-plane
[Eas. (2.1)-(2.7)] and show that this S-plane geo-
strophic momentum approximation satisfies an energy
principle just like the primitive equations except that
the kinetic energy is evaluated geostrophically. We then
derive the potential pseudodensity equation (section
3) and the invertibility relation (section 4), the com-
bination of which constitutes the entire dynamics. In
sections 5 and 6 we examine some consequences of
linearized versions of this theory, in particular the form
taken by the Charney-Stern' theorem on combined
barotropic~baroclinic instability and the meridional
structure of Rossby waves.

2. Semigeostrophic equations on the S-plane

Let us approximate the variable Coriolis parameter
as a linear function of the north-south coordinate. As
approximations to the isentropic coordinate version of
the primitive equations on the 8-plane let us consider

Dug _ . M _
oe ~ U0 +By =Yy +5==0, (21)
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is the total derivative, M = 6II + gz the Montgomery
potential, I = ¢,(p/po)* the Exner function, ¢ = —dp/
a0 the pseudodensity, (u#, v) the eastward and north-
ward components of the velocity, (u,, v,) the geo-
strophic wind components given by

(vg, (2.6)

1 oM M
(44

fn\ax ey )
and Y the northward coordinate in Salmon’s gener-
alized geostrophic coordinates

- Vg U 7
“ 1) (x+f(Y) Y f(Y)) - @D
The above set of equations might be called the 8-plane
geostrophic momentum approximation. We postpone
(until section 7) discussion of the motivation for the
approximate forms (2.1) and (2.2), but simply note
that these two equations revert to the primitive equa-
tions if u, and v, are replaced by u and v, and to the
Jf-plane geostrophic momentum approximation when
B = 0 (Eliassen 1948; Hoskins 1975). The 8 terms in
(2.1) and (2.2) can be regarded as corrections for the
fact that f is taken at Y rather than y. In (2.1), (2.2),
(2.6) and (2.7) we have explicitly indicated the depen-
dence of f on Y. Henceforth, we shall use a more com-
pact notation so that whenever f appears in the fol-
lowing discussion it should be interpreted as f( Y).

The kinetic energy equation associated with (2.1)-
(2.4)is

—(aK)+ (ou(K +¢))+—(ov(K + ¢))

é] . p
+ %(UG(Kg-{- ¢) — d)gt-) + qaw =0, (2.8)

where K, = (1 + vg ) is the geostrophic kinetic en-
ergy. Multlplymg (2.4) by ¢, T we obtain the thermo-
dynamic energy equation

9
Y (oc,T) + (aucpT) + (avcpT)

J .
+ @(JOCPT) — gaw = ¢Q.

(2.9)
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Adding (2.8) and (2.9) we obtain the total energy
equation

.
% (o(Kg+ ¢, T))
+—Q- K.+ M +_¢9_( (K, + M))
o (0K + M) + - (o0(K,

6

6 s (aB(K + M) —
Before integrating (2.10a), we adopt an idea that has
proved useful in such contexts as the definition of
available potential energy (Lorenz [955), the analysis
of baroclinic instability (Bretherton 1966; Hoskins et
al. 1985; Hsu 1988), and the finite amplitude Eliassen—
Palm theorem (Andrews 1983). The idea involves what
happens when an isentropic surface intersects the
earth’s surface. We can regard such an isentrope as.
continuing just under the earth’s surface with a pressure
equal to the surface pressure. At any horizontal position
where two distinct isentropic surfaces run just under
the earth’s surface (and hence have the same pressure),
there is no mass trapped between them, so that ¢ = 0
there. Let us regard the bottom isentropic surface as
the largest value of # that remains everywhere below
the earth’s surface. Assuming the top boundary is both
an isentropic and isobaric surface, assuming no topog-
raphy and vanishing 6 at the top and bottom, we can
integrate (2.10a) over the entire atmosphere to obtain

(-;9; f f f (K¢ + ¢, T)odxdydd = f f f Qodxdyds .

(2.10b)

Thus, except for the fact that the kinetic energy is eval-
uated geostrophically, the governing equations (2.1)-
(2.7) have a total energy conservation principle iden-
tical to the one that exists for the primitive equations.

Here we are concerned with the simultaneous use
of isentropic and generalized geostrophic coordinates
because this will lead to an elegant version of the po-
tential pseudodensity equation. Defining ® = § and T
= t (but noting that 8/99 and 9/d¢ imply fixed x, y
while /00 and d/94T imply fixed X, Y'), we can show
that derivatives in (x, y, 8, t) space are related to de-
rivatives in (X, Y, ©, T) space by

t) =¢Q. (2.10a)

;;=%;98} %%, (2.13)
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Applying (2.11)-(2.14) to the Bernoulli function M*
= M + {(ug + v,?), it can be shown that

DM oM M oM _ (ahr+ o
dx ' dy 96"’ aX ’ aYy
oM* oM*

90 ’ aT)' (2.15)

—?(g’i“ ):

The additional term 3( ug2 + v,%)/f in the meridional
transformation generally constitutes a small correction.
For midlatitude flows the ratio of the magnitude of this
term to the magnitude of the dM*/ dy term is the ratio
of the characteristic magnitude of horizontal wind to
the product of the Coriolis parameter and the earth’s
radius, which is typically about 1 to 60. For mathe-
matical consistency we shall retain this term, although
in section 4 we shall point out some simplifications
that result from its neglect.

The transformation relations (2.11)~(2.14) also
imply that the total derivative (2.5) can be written as

D _ 4 DX o DY d 9_

.1
Dt 3T Dt X = Dt oY 90 (2.16)

With the aid of (2.15) we can now easily show that
(2.1) and (2.2) take the form

DY oM*
= = 1
f D ax (2.17)
DX oM*
~f 5 = Sy (2.18)

When (2.17) and (2.18) are used on (2.16), we see
that a major advantage of the transformation from (x,
v, 0, t) space to (X, Y, ©, T) space is the absence of
ageostrophic advection in (2.16). We shall take ad-
vantage of this in section 3.

3. Vorticity, potential vorticity, and potential pseu-
dodensity equations

The equation for the absolute isentropic vorticity
can be derived from (2.1) and (2.2) or from (2.17)
and (2.18); the latter approach is simpler (in this regard
see also the approach to potential vorticity conservation
suggested by Shutts and -Cullen (1987), section 2).
Combining the derivatives of (2.17) and (2.18) in such
a way as to form the total derivative of f9(X, Y)/d(x,
y), i.e., forming X,(2.17), — Y,(2.18), — X,(2.17)x
+ Y,(2.18),, results in

2£+f(a—u+§2)—‘(5%+n

d\.
—1)6=0, (3.1
Dt ax a9y ay)‘ (-1
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where

(&m0 = f(a(X’ Y) 4(X,Y) (X, Y)

a(y,0) ° 8(8, x) ’ a(x, y)

Eliminating the horizontal divergence between (2. 4)
and (3.1) we obtain

9 AW 30
(E— a—+§%)0<—§5€),

). (3.2)°

DP

"o (3.3)

where P = {/ ¢ is the Rossby—Ertel potential vorticity.
The last step in (3.3) follows from (3.2) and (2.12)-
(2.14). This shows that 9/30 is actually the derivative
along the vorticity vector and thus the name “vortex
coordinates” might be appropriate for (X, Y, 0, T).

Let us now define the potential pseudodensity o*
by :

o. (3.4)

*
I
e S

Note that the potential vorticity P and the potential
pseudodensity ¢* are related by Pe* = f. Thus, when
(3.3) is manipulated into an equation for ¢* and when
the total derivative is expressed in geostrophic space
using (2.16), we can write the fundamental predictive
equation of the model in the flux form

L NE

o* OM*' d [o* aM*\ |
oT dX

7oy ) ey \f ax

+ 5‘96(0*9) =0. (3.5)

4. Invertibility principle

The potential pseudodensity ¢* is a combination of
the mass field ¢ and the wind field d(x, y)/9(X, Y).
However, since o is related to A7* through hydrostatic
balance and d(x, y)/d(X, Y)is related to A/* through
geostrophic balance, ¢* depends only on M*. Thus,
everything can be obtained from o* if we can somehow
invert it to obtain AM*. The relation between M™ and
o* is derived as follows. From the definition of ¢* we
have

a(x, y, II)

+To* =0
ax,v,ey 7 T

(4.1)

where T = dIl/dp = «II/p. Using the geostrophic,
hydrostatic, and coordinate transformation relations,
we can express x, ¥ and Il in terms of M* as

(x,y, ) = [X = f2M%, Y - [ UM3

~ B 3M%Y), ME], (4.2)
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where we have used the shorthand notation /2 = f(Y)(2f(Y) — f(¥)). Substituting (4.2) into (4.1), we

obtain

M%x—f?

272
f f M’;{e
which expresses the invertibility principle in terms of
the determinant of a Hessian-type matrix. Shutts and
Cullen (1987) have discussed in detail the relation of
hydrodynamic stability and the positive definiteness of
such matrices. Since we are neglecting the effects of
topography and assuming that the lower boundary is
the constant height surface z = 0 and the isentropic
surface @ = O, then M = OII at ® = Og. Written in
terms of M*, this lower boundary condition becomes

1
OMY — M* + 37 [M% + (M% + 28!

X (OMg — M*))?1=0 at © =0z (4.3b)

" Since the upper boundary is an isentropic and isobaric
surface with potential temperature ©,and pressure pr,
the upper boundary condition for (4.3a) is simply

M§ =U(pr) at © =0y, (4.3¢)

The lateral boundary conditions depend on the partic-
ular application, but typically might consist of a zonally
periodic midlatitude channel. In any event, for a given
o*, we can regard (4.3) as a nonlinear second order
problem in M*. Although T and f both depend on
M*, this additional nonlinearity is weak. In fact, if the
additional term in the second entry of (2.15) is ne-
glected, the invertibility relation (4.3a) simplifies to

1 1‘1",\‘w'*"f2 fz(f_z*M})Y M3
F M;\:Y FPU2MY )y —f* My
Mxe M’;’@ M;(—)
+Te* =0, (44a)
and the lower boundary condition to
1
OME — M* + 57 MY + M%) =0
at @ = 0. (4.4b)

The upper boundary condition (4.3c) is unchanged.
In (4.4) the nonlinearity associated with f has disap-
peared.

The mathematical problems (4.3) or (4.4) are gen-
eralizations of the fplane case discussed by Schubert
et al. (1989). In particular, when [ is assumed to be
a constant, (4.3) and (4.4) reduce to their (2.14), while
if we further assume that 3/9Y = 0, the middle elements
of the first and third rows and the first and third col-
umns vanish, in which case (4.3) and (4.4) reduce to
their (3.2). An efficient multigrid solver for the two-

1 3 ff[f_z(M?'— 1 .
= | S22 MY)y P 7MY = 8 MOO)ly — 7 May
S My -

BFMY) Iy My
+Te* =0, (4.3a)

BME)e Mg

dimensional fplane case has been developed by Fulton
(1989).

The predictive equation (3.5) and invertibility prin-
ciple (4.3) or (4.4) form a closed system for the pre-
diction of ¢* and the diagnosis of M*. Since the prob-
lem of isentropes intersecting the earth’s surface has
been addressed by adopting the massless region ap-
proach outlined in section 2, the system can in principle
handle surface frontogenesis. Since ¢ = 0 in the mass-
less region, ¢* = 0 there also. Thus, the prediction of
* by (3.5) includes predicting the movement of the
o* = 0 region. This procedure is consistent with Breth-
erton’s (1966) notion that “any flow with potential
temperature variations over a horizontal rigid plane
boundary may be considered equivalent to a flow
without such variations, but with a concentration of
potential vorticity very close to the boundary.” We have
simply replaced Bretherton’s thin sheet of infinite po-
tential vorticity with a thin sheet of zero potential
pseudodensity and chosen to predict the evolution of
the entire ¢* field (including the zero potential pseu-
dodensity region) with (3.5). Of course, such a pro-
cedure has implications for the numerical methods
used since we must cope with discontinuities in o*.
However, workable schemes do exist. For example, re-
cently Arakawa and Hsu (see chapter V of Hsu 1988),
in the context of solving (2.4) in a primitive equation
model, have proposed a finite difference scheme that
has very small dissipation and computational disper-
sion and that guarantees positive definiteness.

5. The generalized Charney-Stern theorem

Since a major application of semigeostrophic theory
is the study of baroclinic wave processes, it is of interest
to derive the form of the Charney-Stern (1962) theo-
rem that results from the present S-plane semigeos-
trophic theory. Here we follow the approach of Eliassen
(1983), which avoids the assumption of exponential
time dependence. We begin by linearizing the potential
pseudodensity equation about a zonal flow that varies
in Y and 6, to obtain

Dro*' + v, f(f'e*)y = 0, (5.1)

where Dy = 8/dT — f~Y0M*/3Y)(3/9X), and
S, = MY%. Introducing the northward geostrophic
particle displacement 7/, defined by vy = Drv/, we can
integrate (5.1) to obtain

o*' + f(f71e*)yn = 0. (5.2)
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Multiplying (5.2) by fv, and taking the zonal average
‘at fixed Y, we obtain

(/‘2(f“&*)yé7ﬁ) +fvie* =0. (5.3)
T

The linearized invertibility relation can be written as
V¥Pe + DrVo — DeVy, (5.4)

where x' = —v,/f and y' = u}/f. Multiplying (5.4)
by fu, and taking the zonal average, we find that

ot = Xy + Jop'y -

= foe(VeDy — VyDo) + fUe(DyYe = DoVY)
= (fYeveD’ — [DeVe) )y + (fDyVey — fIyveD e,

(5.5)

where the last step requires use of the zonally averaged
thermal wind equation. The second line of (5.5) shows
that the northward geostrophic flux of potential pseu-
dodensity can be expressed as the divergence of a geo-
strophic Eliassen-Palm flux. When (5.5) is substituted

into (5.3) we obtain an equation for the density of E~

P wave activity (see Edmon et al. 1980, for a discussion
of the quasi-geostrophic version). We are now inter-
ested in integrating this equation over the (Y, ©) plane.
If we use the boundary conditions v, = 0 at the north-
ern and southern boundaries (Eliassen 1983), the re-
sulting lateral boundary fluxes vanish. The resulting
boundary flux at the model top vanishes because both
Pyand p’ vanish there. To show that the lower boundary
flux vanishes, we proceed as follows. From the lower
boundary condition on the basic state flow we have
OI1 — M = 0. Differentiating this with respect to Y and
using the geostrophic relation, we obtain

OTpy + fil,jy=0 at ©=0z  (56)

From the lower boundary condition on the perturba-
tion flow we have OI' — M*' + if,u, = 0. Multiplying
this by v and taking the zonal average, we obtain

OTv,p + fil,v,y’ =0 at ©=0z (5.7)
Subtracting jy times (5.7) from vy’ gy times (5.6), we

conclude that -
Dy —pypp' =0 at ©=0; (58)
Thus, the integration of (5.3) over Y and O results in
9 f 2 p=i=ky. LT3 -
an, [ )y2n dYde =0. (5.9)

This is essentially Eliassen’s (1983 ) generalization of
the Charney-Stern theorem, which states that, in order
for 7'* to grow, (f ~'e* )y must have both signs.

6. Rossby wave solutions

It is of interest to examine the Rossby wave solutlons

within semigeostrophic theory since they have a dif-
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ferent meridional structure than those obtained from
midlatitude B-plane quasi-geostrophic theory. For
simplicity let us consider the quasi-Boussinesq case in
which T is set equal to the constant I'y = R/pg. Then,
for a resting basic state with constant pseudodensity
a0 = (pp — pr)/(O7 — Op), the linearized potential
pseudodensity equation (5.1) and the linearized in-
vertibility relation (5,4) can be combined into

d (9% M*' 1 oM™’ f* aPM*Y
. f2 +
aT | ax? Y f2 6Y Tyoo 002
oOM*'
+ 8 —5/_\’— =0. (6.1)
Defining ¢ = T'yoo(07 — ©5)% = R(O7 — 05)(ps — pr)/

psand ¥ = (Bc)"2(fy + BY), and then searching
for solutions of the form

M*(X,Y,6,T)

=Jn(‘.‘/)cos[—————a'”( L G)] MxeD) - (6.2)

(0r — 83)
we obtain the meridional structure equation
da*m 2 dm ck  ck? 2ar2
—_——— M=
Ay Y dy ( g ~emY ) 0.

(6.3)

The linearized lower boundary condition is satisfied if
the constants «,, are the solutions of the transcendental
equation «a,, tana,, = (07 — 0p)/0Og. For the US Stan-
dard Atmosphere we have 7 = 333 K, pr = 22.5 kPa,
0z = 287 K, pp = 100 kPa, in which case ¢ = 101.2 m
s~! and the solutions of the transcendental equation
are a,, ~ 0.1241w, 1.01607, 2.00817, 3.0054x, + - -,
correspondingto m =0, 1,2, 3, - + -. The first of these
roots (m = 0) corresponds to the external mode, while
the remaining roots (which are approximately integral
multiples of 7) correspond to internal modes.

The solution of (6.3) is (Abramowitz and Stegun
1964, page 505)

M(Y) = A[U(a, , am?/Sz)M(a, , am‘yz)

N |

3
2
- M(a, % ' amysz)U(a, g— s a,,,‘yz)]?/3

X exp(— % am?lz) , (6.4)

where A is an arbitrary normalization constant, M{(a,
5/2, a,,¥?) and U(a, 5/2, a,,Y?) are the confluent
hypergeometric functions (Kummer functions), ¥
and Y are the southern and northern boundaries, and
where the parameter q is related to k, «,, and v by the
dispersion relation

_ Bk
T k2 + Bam(5 — 4a)/c’

(6.5)
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FIG. 1. The dimensionless Rossby wave frequency (¢f) v as a
function of the dimensionless zonal wavenumber (c/8)"/%k as com-
puted from the dispersion relation (6.5). The three dashed curves
are for the external modes (from top down) ay,,, # = 0, 1, 2. Similarly,
the three solid curves are for the first internal modes qa,,, n = 0,
1, 2.

The meridional wavenumber parameter a must be de-
termined from specification of the lateral boundary
conditions, which are here assumed to be walls (with

¢ = 0and hence M = 0) at both southern and northern
boundaries. Equation (6.4) already satisfies the
boundary condition M = 0 at ¥ = ¥. Requiring this
condition also at ¥ = Y leads to the transcendental
relation

U(a, % s amysz)M(a, % , am?/Nz)

5 5
.'— M(a,i, meSZ)U(a,E )

am?/Nz) =0. (6.6)
For fixed values of a,,,, ¥s and Yy, this determines a
set of a’s, which we label a,,, ,. For a 3000 km wide 8-
plane channel centered at 45°N we have Y5 = 1.947
and Yy = 3.147. For the external mode (ap ~ 0.1241x)
the first three noninteger' solutions of (6.6) are o n
~ — 3.9836, — 17.1795, —39.1563 while for the first
internal mode (o ~ 1.01607) they are g, , ~ —4.1225,
—6.2532, —8.9528. The dispersion relation (6.5) and
the corresponding structure function J(%Y') are shown
in Figs. 1 and 2. In standard quasi-geostrophic S-plane
theory the three /2 factors in (6.1) are replaced by the
constant f,%, which results in a trigonometric variation
of M*' in the meridional direction. Thus, the midlat-
itude quasi-geostrophic and semigeostrophic Rossby
wave solutions essentially differ only in meridional

! Negative integer solutions of (6.6) also exist but they result in
trivial solutions for M(Y).
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structure. The deviation of the curves in Fig. 2 from
pure sine waves reflects the influence of variable f
in (6.1).

7. Concluding remarks

The main results obtained here are (3.5) and (4.3).
Together these form a system for the prediction of the
potential pseudodensity ¢* and the diagnosis of M*
from ¢*. The advantage of using geostrophic and is-
entropic coordinates is that the ageostrophic compo-
nents of the flow have become entirely implicit in the
coordinate transformation, a result stemming from the
fact that (2.1), (2.2), (2.6) and (2.7) lead to the ca-
nonical momentum equations (2.17) and (2.18). The
approximations (2.1) and (2.2 ) may at first sight seem
subtle. However, they are less so if they are viewed
simply as the equations that result from combining the
desired canonical forms (2.17) and (2.18) with the
geostrophic relations (2.6) and the geostrophic coor-
dinates (2.7). The canonical forms (2.17) and (2.18)
are desired because, according to (2.16), they make
the ageostrophic advection implicit in the coordinate
transformation. From this point of view we can regard
the present model as one of a family, with the other
members derived by retaining (2.17) and (2.18),
modifying (2.6) and/or (2.7), and then finding the
resulting versions of (2.1) and (2.2). In fact, this tech-
nique of beginning with the geostrophic relations, the
coordinate transformation relations and the desired
canonical momentum equations, and then deriving the

1.0 —
0.5 |
0.0 ¢

-05 |

-1.0 .
-1500 0

Y (km)

FIG. 2. The meridional structure functions M (¥ ) computed from
(6.4). The normalization factor 4 in {6.4) has been chosen so that
the maximum value of [M(Y)]| is unity. The external modes (aq,.;
n =0, 1, 2) are given by the dashed lines and the first internal modes
(@,.; n =0, 1, 2) by the solid lines. The index # gives the number
of nodes in the interior of the domain.
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generalized geostrophic momentum approximation,
can be used to extend the present 8-plane argument to
sphencal coordinates. This will be discussed in a forth-
coming paper.
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