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1. Introduction

Tropical cyclone modeling has now advanced to a
stage where it is possible to predict, using three-di-
mensional nonhydrostatic nested-grid models, not only
the synoptic-scale flow patterns that determine the cy-
clone track, but also the mesoscale inner core vorticity
structures that determine the maximum wind and min-
imum central pressure (Chen and Yau 2001; Braun
2002). An observational basis for understanding the in-
ner core vorticity structure was recently provided by
Kossin and Eastin (2001), who used aircraft data to
show that annular rings of high vorticity are generated
in the hurricane eyewall during intensification but are
typically eradicated when intensification stops. During
prolonged periods of intensification, eyewall flows ap-
pear to evolve toward vortex sheets, in agreement with
the theoretical notion that the dynamics of the eyewall
are frontogenetic and that there is a tendency for the
azimuthal flow to evolve toward a discontinuity (Eman-
uel 1989, 1997). Motivated by such observed flow fields
in hurricanes, a theoretical and modeling study by Schu-
bert et al. (1999) considered the barotropic stability and
nonlinear evolution of unforced ‘‘hollow-tower’’ vor-
ticity structures. Such structures are characterized by
annular rings of enhanced vorticity (representing the
eyewall) surrounding a region of relatively weak vor-
ticity (representing the eye). Their study suggests that
remarkable vorticity rearrangement processes are oc-
curring in the inner core regions of tropical cyclones,
and that these processes can have a significant effect on
the structure, intensity, and evolution of the storms.
Thus the simultaneous simulation of tropical cyclone
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track and inner core intensity remains a challenge, at
least partly because of the very different, but compa-
rably important, horizontal scales involved. In partic-
ular, it is quite possible to incorporate horizontal dif-
fusion in such a way that it has little effect on the scales
of motion involved in track prediction but has a dom-
inant effect on the inner core vortex structure.

The purpose of this note is to illustrate the effects of
diffusion on hollow-tower vorticity structures and to
determine how small a value of viscosity we should
specify in three-dimensional hurricane models in order
that diffusion does not erroneously dominate the ad-
vective vorticity rearrangement process. We will also
comment on some of the problems associated with the
use of horizontal diffusion as a parameterization of the
advective vorticity rearrangement process.

2. Diffusive evolution of a circular vortex sheet

First consider the effect of horizontal diffusion on a
circular vortex. The governing equation for the relative
vorticity z(r, t) is

]z ] ]z
5 n r , (1)1 2]t r]r ]r

where n is the kinematic viscosity. As the initial con-
dition, consider a vortex that is initially characterized
by an infinitesimally thin annular ring of enhanced vor-
ticity embedded in an irrotational flow. The initial az-
imuthal wind profile is given by y(r, 0) 5 0 for 0 # r
, a, and y(r, 0) 5 y0(a/r) for a # r , `, where y0 is
the initial maximum wind. This describes a circular vor-
tex ‘‘sheet’’ with radius r 5 a.

One of several methods available to solve (1) is the
method of Hankel transforms. The Hankel transform of
z(r, t) is given by (k, t) 5 z(r, t)J0(kr)r dr, and the`ẑ #0

inverse transform is given by z(r, t) 5 (k, t)J0(kr)k`# ẑ0
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FIG. 1. Evolution of (a) nondimensional vorticity z/(y0 /a) and (b)
nondimensional tangential wind y/y0 based on the solution (3) for
chosen values of nondimensional time t 5 nt/a2.

FIG. 2. Evolution of nondimensional vorticity z /(y0 /a) at r 5 0 as
a function of nondimensional time t 5 nt/a2.

dk, where J0 is the zero-order Bessel function and k is
the radial wavenumber. Applying the transform to (1),
integrating by parts twice, and using the zero-order Bes-
sel equation rd/dr[rdJ0(kr)/dr] 5 2k2r2J0(kr), we obtain
d /dt 5 2nk2 , the solution of which is given by (k,ẑ ẑ ẑ
t) 5 (k, 0) exp(2nk2t). Substituting this last result intoẑ
the inverse transform gives z(r, t) 5 (k, 0)`# ẑ0

exp(2nk2t)J0(kr)k dk, where (k, 0) 5 z(r, 0)J0(kr)r`ẑ #0

dr 5 {d[ry(r, 0)]/dr}J0(kr) dr 5 ay 0 J0(ka) in thea1«#a2«

limit « → 0. Using these last two results we obtain
`

2z(r, t) 5 ay J (ka) exp(2nk t)J (kr)k dk, (2)0 E 0 0

0

which is an integral representation for the solution of
our diffusion problem. The integral in (2) can be eval-
uated (see Gradshteyn and Ryzhik 1994, p. 739) to ob-
tain

2y /a (r/a) 1 1 r/a0z(r, t) 5 exp 2 I , (3)05 6 1 2[ ]2t 4t 2t

where I0 is the modified Bessel function of order zero,
and t 5 nt/a2 is a dimensionless time.

Figure 1a, which has been constructed using (3),
shows plots of the dimensionless vorticity z(r, t)/(y 0 /a)
as a function of r/a for seven different values of the
dimensionless time t. To construct the corresponding

wind plots shown in Fig. 1b we have used numerical
quadrature on y(r, t) 5 r21 z(r9, t)r9 dr9 with ther#0

integrand z(r9, t)r9 computed using (3). Figure 1 shows
how the diffusive flux of vorticity smooths the profiles
and drives the vorticity from a hollow-tower to a mono-
tonic profile. The tangential wind profile becomes in-
creasingly less ‘‘U shaped’’ as the flow increases in the
eye and decreases in the eyewall.

For r 5 0 and t . 0, (3) reduces to z(0, t) 5 (y 0 /
a)[1/(2t)] exp[21/(4t)], from which we can plot the
dimensionless central vorticity z(0, t)/(y 0 /a) as a func-
tion of t. This is shown in Fig. 2. The central flow
remains approximately irrotational until t ø 0.03, after
which the central vorticity increases until it achieves its
maximum at t 5 0.25. When t 5 0.25, the Laplacian
operator on the right-hand side of (1), evaluated at r 5
0, vanishes, and the central vorticity is (2y 0 /a)e21, that
is, e21 times the initial average vorticity inside r 5 a.
When t . 0.25 the central vorticity decreases as all the
diffusive flux is then directed outward. The increase of
the central vorticity due to the inward flux when t ,
0.25 is much more rapid than the ‘‘slow diffusive spin-
down’’ that occurs later. In other words, the diffusion
is more efficient at eradicating the annular ring than the
subsequent monopole. Since t 5 0.25 is the dimen-
sionless diffusive time to monopole formation, we can
define the dimensional diffusive time to monopole for-
mation as tmf 5 a2/(4n). For a 5 10 km, tmf is, respec-
tively, 694, 69.4, and 6.94 h for n 5 10, 100, and 1000
m2 s21, a range of eddy viscosity values typically used
in hurricane models.

3. Advective–diffusive evolution of a circular
vortex sheet

With the choice a 5 10 km, the vorticity and wind
profiles at t 5 0.008 in Fig. 1 are very similar to the
initial condition used by Kossin and Schubert (2001) in
experiment 7 of their vorticity mixing study. In their
results, reproduced here in Fig. 3, the initial annular
ring of vorticity advectively rearranges itself into a vor-
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FIG. 3. Azimuthal mean (a) vorticity and (b) tangential wind at t
5 0 and after an 8-h numerical integration of (4). Reproduced from
Kossin and Schubert (2001, their Fig. 11).

ticity monopole in less than 8 h, according to the non-
divergent barotropic dynamics:

2z 1 uz 1 yz 5 n¹ z,t x y (4)

where u 5 2cy, y 5 cx, and z 5 ¹2c. Their results are
nearly inviscid since their specified viscosity is n 5 5
m2 s21, which gives a dimensional diffusive time to
monopole formation of tmf 5 a2/(4n) ø 1389 h, much
longer than the roughly 7 h required for advective re-
arrangement to a monopole. Values of n somewhat larg-
er than n 5 5 m2 s21 would also seem acceptable. For
example, n 5 100 m2 s21 gives tmf 5 69.4 h, which is
about 10 times the time required for advective rear-
rangement.

Now suppose we want to parameterize the asym-
metric advective rearrangement process in an axisym-
metric model using simple diffusion. What value of n
should be used? If we want the timescale of monopole
formation to be correctly parameterized in the axisym-
metric model, we should choose n to satisfy n 5 a2/
(4tmf) 5 (10 km)2/(4 3 7 h) ø 1000 m2 s21. However,
this simple parameterization has serious deficiencies
since, during the advective process, the peak value of
vorticity remains unchanged (see Fig. 3), while during
the pure diffusive process illustrated in Fig. 1, the peak
vorticity at t 5 0.25 is only 24% of the peak value at

t 5 0.008. It is in this regard that the results of advective
rearrangement and the results of diffusion are quite dif-
ferent. We can summarize by saying that the purely
diffusive evolution of an annular ring does not accu-
rately parameterize the process of vorticity rearrange-
ment, particularly in the hurricane inner core.

Another way to interpret the basic difference between
advective rearrangement of vorticity and simple diffu-
sion of vorticity is in terms of the selective decay prin-
ciple of 2D turbulence theory. This principle states that
in two-dimensional high Reynolds number flows, gov-
erned by (4), the global enstrophy Z 5 ## ½z 2 dx dy is
selectively decayed over the global kinetic energy E 5
## ½(u2 1 y 2) dx dy. This is a consequence of the fact
that, according to the governing dynamics (4), E(t) and
Z(t) obey dE /dt 5 22nZ and dZ /dt 5 22n P, where P
5 ## ½=z · =z dx dy is the global palinstrophy, a mea-
sure of the overall vorticity gradient. Global palinstro-
phy evolution is described by

dP
2 25 2 [u z 1 (y 1 u )z z 1 y z ] dx dyEE x x x y x y y ydt

2 22 n (¹ z) dx dy. (5)EE
Although the last term in (5) always tends to reduce P,
during the advective rearrangement of vorticity, P can
rapidly increase due to the first term on the right-hand
side of (5), and for small enough values of n, P can
surge to values very much larger than its initial value
(cf. Schubert et al. 1999, Fig. 8). During the period of
large P, Z decays rapidly in comparison with E , whose
rate of decay becomes smaller as Z becomes smaller. In
this way, Z is highly damped while E is nearly invariant.
This is the essence of the selective decay hypothesis.
The palinstrophy evolution associated with the pure dif-
fusive vorticity evolution described by (1) is given by
dP /dt 5 2n2p # {][r(]z/]r)]/(r]r)}2r dr, which is the
nonadvective, axisymmetric, special case of (5). Thus,
in the pure diffusive case, P can never achieve values
higher than its initial value, and the essence of the se-
lective decay of enstrophy over energy cannot be sim-
ulated.

Although pure diffusion is not consistent with selec-
tive decay of enstrophy over energy, there are a number
of parameterizations that are consistent. The anticipated
vorticity method for the nondivergent barotropic model
(Leith 1985), and its generalization to the shallow water
equations and to the quasi-static primitive equations
[referred to as the anticipated potential vorticity method
(Sadourny and Basdevant 1985)] are formed by recast-
ing the equations of motion using a modified diffusion
that conserves energy exactly and allows dissipation of
enstrophy or potential enstrophy. In addition, certain
spatial discretization schemes (Arakawa and Hsu 1990)
have been designed to mimic the anticipated potential
vorticity method and thus to be consistent with selective
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decay. The maximum entropy production principle (Ka-
zantsev et al. 1998) is a statistical method that relies on
solution of the variational problem of globally maxi-
mizing the rate of production of Boltzmann mixing en-
tropy under the physical constraints of the system (e.g.,
global energy conservation), while allowing dissipation
of enstrophy. These parameterizations could be consid-
ered an improvement over pure diffusion, but they can
still suffer from deficiencies when modeling the dra-
matic vorticity rearrangements that can occur in the hur-
ricane inner core. For example, the maximum entropy
solutions to barotropically unstable initial flows do not
capture the process whereby coherent vorticity struc-
tures are transported via advection while remaining rel-
atively unmixed in the process (e.g., Jin and Dubin
1998) and thus the method tends to underpredict (overly
mix) vorticity values.
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