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ABSTRACT

Using an axisymmetric primitive-equation tropical cyclone model, we first illustrate the way in which nonlinear
processes contribute to the development of an atmospheric vortex. These numerical experiments show that
nonlinearities allow a given diabatic heat source to induce larger tangential wind (and kinetic energy) changes
as the vortex develops and the inertial stability becomes large. In an attempt to gain a deeper theoretical un-
derstanding of this process, we consider the energy cycle in the balanced vortex equations of Eliassen. The
temporal behavior of the total potential energy Pis governed by dP/dt = H — C, where H is the rate of generation
of total potential energy by diabatic heating, and C is the rate of conversion to kinetic energy. We define a time-
dependent system efficiency parameter as #(z) = C/H. Then, using the dynamical simplifications of balanced
vortex theory, we express 7(f) as a weighted average of a dynamic efficiency factor #(r, z, #). The dynamic
efficiency factor is a measure of the efficacy of diabatic heating at any point in generating kinetic energy and
can be determined by solving a second-order partial differential equation whose coefficients and right-hand side
depend only on the instantaneous vortex structure. The diagnostic quantities 7(¢) and 5(r, z, {) are utilized in
the analysis of several balanced numerical experiments with different vertical and radial distributions of a
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diabatic heat source.

1. Introduction

For many years, tropical meteorologists have wres-
tled with the question of how the relatively common
tropical cloud cluster is transformed into the more in-
frequently observed hurricane or typhoon. Charney
and Eliassen (1964) and Ooyama (1964) were the first
to propose a closed theory describing the dynamical
events responsible for this transformation, most fre-
quently referred to as Conditional, Instability of the
Second Kind, or CISK. This theory proposes that trop-
ical cyclone development occurs due to a secondary
instability involving the cooperative interaction of two
scales of motion. The convective-scale motions provide
a horizontal gradient of latent heat release which forces
a large-scale secondary radial circulation. This large-
scale radial circulation provides the convective-scale
with the necessary moisture through the horizontal in-
flux of water vapor in the lower levels. As the large-
scale circulation increases, so does the horizontal
transport of water vapor, which serves to increase the
release of latent energy in the inner regions which, in
turn, further intensifies the large-scale circulation.

* The National Center for Atmospheric Research is sponsored by
the National Science Foundation.
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The limited observational data available on tropical
cyclone structure (e.g., see Gray, 1981) suggest that the
total amount of water processed by the cloud cluster
and the fully developed tropical storm is about the same
in an area-averaged sense. Only the horizontal distri-
bution of the total latent heat release is different. These
data and the results of nonlinear numerical simulations
of the tropical cyclone life cycle do not entirely support
the linear CISK hypothesis, which relies on increased
convection and the associated increase in precipitation
(i.e., convective heating) for development. Although
the theory provides an adequate explanation of the
gross conceptual features of tropical cyclone genesis,
it appears to be incomplete, given observational and
nonlinear numerical evidence.

This raises the question of just how the atmosphere
responds dynamically to the release of latent heat in
tropical cloud clusters. This response can depend on
many factors, including the latitude of the disturbance,
the horizontal scale of the heating, and the static and
inertial stabilities of the flow in which the heating is
embedded. The first two factors can be studied using
linear models on an f-plane (e.g., Schubert et al., 1980)

- or an equatorial 8-plane (e.g., Silva Dias et al., 1983).

The remaining factors are essentially nonlinear because
the static and inertial stabilities (and therefore the re-
sponse) change as the flow field evolves. In particular,
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the pressure fall and tangential wind acceleration pro-
duced by a heat source imbedded in a strong vortex
can be much larger than the corresponding changes
produced by the same heat source in a weak vortex
(Shapiro and Willoughby, 1982; Ooyama, 1982;
Schubert and Hack, 1982).
In order to establish a fecling for the role of these
_nonliriear effects on the development of a tropical vor-
tex, let us consider the following numerical experiments
performed with two simplified versions of an 18-level,
axisymmetric, primitive-equation, sigma-coordinate
hurricane model (see Hack, 1980). For the convenience
of later discussion, we will present the continuous gov-
erning equations in a pseudo-height coordinate (cf.,
Hoskins and Bretherton, 1972). The axisymmetric,
J-plane, inviscid response to a specified heat source
Q(r, z, t) is then determined by the system of equations
~ given by

éy+ é)u+w-%—(f+ ) +99——0

or ar 9z ar (D

%t't)“*i%’_w_g—f (f+) —o a2
_‘;izb=0£;)g (1.3)
‘% %:o, (1.4)

where z = [1 — (p/po)I(cHo/8) is the pseudo-height,
p(2) is a known pseudo-density, u, v, w are the radial,
tangential, and vertical components of velocity, # the
potential temperature, and ¢ the geopotential. We shall
refer to the system (1.1)-(1.5) as the nonlinear model.
Neglecting all the underlined terms in (1.1)—(1.5) and
replacing d Inf/dz with a specified mean tropical profile
d Inf/3z result in a system which will be referred to as
the linear model. We wish to illustrate the different
responses produced by each of these model formula-

* tions by assuming they are forced with a specified in-
variant heat source of the form

Q = —(r/ro)2

—=(r, 2) = aQy(z)e ; (1.6)

Cp
For these experiments, (,(z) is an analytic approxi-
mation to the apparent heat source obtained by Yanai

et al. (1973). In the pressure coordinate, it takes the

form
Qip) = Q sin(wa)e ™, (L.7)
where
o= P~ Pr , (1.8)
Ds — Pr
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and the pressure surfaces bounding the heated region
have been chosen to be pz = 1000 mb (z = 0) and pr
= 100 mb (z = 14.8 km). This formulation allows the
vertical location of the heating maximum to be easily
displaced, while at the same time maintaining a con-
straint on the vertically integrated heating. Choosmg
0 = 1.87°C day ' and « = 0.554 places the maximum
heating at 500 mb (z = 5.5 km), which proves to be a
very good approximation to the Yanai heating profile.
The normalization coefficient a is determined by re-
quiring the horizontally averaged heating inside radius
ri to be equal to Q,(z). This is mathematically equiv-
alent to requiring
r2

=——= ( ) [1 — e—(n/m)z]- 1.9)
2 f re gy \To

For the experiments to be presented, we have chosen
ry = 250 km and ry = 150 km. Although the instan-
taneous switch-on of the heating at r = 0 excites some
transient gravity wave energy, it quickly leaves the
computational domain by means of a radiation
boundary condition (Hack and Schubert, 1981).

In Figs. 1 and 2, the time evolution of the central
surface pressure, the maximum tangential wind, and
the radius of maximum tangential wind are shown for
the linear (dashed lines) and the nonlinear (solid lines)
models. The linear model produces a vortex with a
fixed radius of maximum wind (160 km), a central
surface pressure tendency of 0.75 mb day™!, and a
maximum tangential wind change of about 3 m s™!
day™!. The nonlinear model produces a vortex which
begins to deviate significantly from the linear solution
after 24 h. As the radius of maximum wind moves
inward, the central surface pressure and the maximum
tangential wind begin to change more rapidly. Near
the end of the five-day integration, the surface pressure
tendency in the nonlinear model is about twenty times
that produced by the linear model, while the maximum
tangential wind change is three times the linear rate.
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FIG. 1. Central surface pressure as a function of time for an in-
variantly forced linear primitive-equation model (dashed) and non-
linear primitive-equation model.
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FiG. 2. Radius of maximum wind and maximum low-level tan-
gential wind as a function of time for an invariantly forced linear
primitive-equation model (dashed) and nonlinear primitive-equation
model (also see Fig. 1).

In general, the nonlinear response to this artificial forc-
ing is much more analogous to the type of behavior
observed in developing hurricanes and typhoons (e.g.,
see Holliday and Thompson, 1979; Kurihara and Tu-
leya, 1974).

These results demonstrate that nonlinear terms in
the governing equations begin to play a significant role
in the development of a tropical vortex at a very early
stage in its evolution. Unfortunately, it is very difficult
to determine what dynamical processes are of most
physical significance in primitive-equation results like
those presented above, For that reason, in the remain-
der of this paper we shall attempt to understand the
nonlinear behavior observed in the primitive-equation
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integration using the transformed Eliassen balanced
vortex model introduced by Schubert and Hack (1983).
The most important benefit of the balanced system is
that it allows us to derive an analytic measure of the
efficiency of an axisymmetric vortex at converting total
potential energy (e.g., generated by latent heat release)
to the kinetic energy of the balanced flow. We will show
that this dynamic efficiency factor can be simply eval-
uated from knowledge of the instantaneous flow field.
By conducting several numerical experiments with the
balanced system and using these diagnostic concepts
of efficiency, we hope to provide better insight into the
dynamical processes that contribute to the nonlinear
response observed in the primitive-equation results
discussed above.

2. Review of balanced vortex theory

Let us now consider axisymmetric flows which are
always close to a state of gradient balance, so that (1.1)
can be approximated by [ f+ (v/r)}v = d¢/or. A nec-
essary condition for this to be true is that the forcing
have a time scale that is large when compared to 1/f
In the absence of friction, the absolute angular mo-
mentum per unit mass

I o2 f

) RE=r+ > r
is conserved. We call R the potential radius, i.e., the
radius to which a parcel must be moved (conserving
absolute angular momentum) in order to change its
tangential component of velocity to zero. The govern-
ing equations then become (2.1)~(2.5) of Table 1.

TABLE 1. Governing equations.

) )t S) o oo
%0=%§, @.3)
%*%”’ 2.4

i ud wg—z=z%Q=Q. 2.5)

srr(E20) -2, @6)
2 ('52) —Ru* =0, @7

£y- 2 (2.8)
;—9% + 0—:: gow* = Q. (2.10)

We now wish to transform (2.1)-(2.5) from (7, z, ?)
space to (R, Z, T') space, where Z = zand T = t. The
upper-case symbols for pseudo-height and time are in-
troduced to distinguish derivatives at constant radius
(8/9z and 9/d¢) from derivatives at constant potential

radius (8/9Z and 3/0T). Derivatives with respect to r
and R are related by )

9

ROR’ (2.11)

9 _
ror

~ e
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where the absolute vorticity { is given by

§_90 (R f__o (7
f—rar(Z) or g‘RaR(z)' (2.12)

For further discussion on the use of such coordinate
transformations, the reader is referred to the work of
Shutts and Thorpe (1978), Shutts (1980), Gill (1981),
Schubert and Hack (1983) and Thorpe (1985).

In analogy with semigeostrophic theory (Hoskins
and Draghici, 1977), we introduce the potential func-
" tion

1 1, (R —r??
d=¢p+-0v2= — N
¢ 3 v'=¢ + 8f 2 , (2.13)
and the new transverse circulation components
or .

Ruy* = - W .14).
U r (u w 3 Z) s (2.14)

w* ==, 2.15

¢ (2.15)

Then, as discussed more fully in Schubert and Hack
(1983), the governing system (2.1)~(2.5) becomes (2.6)-
(2.10), which is shown on the right side of Table 1 for
easy comparison. The potential vorticity g is defined
below in (2.24a). In comparing the two columns of
Table 1, we note that (2.6)-(2.10) represent a simpli-
fication over (2.1)-(2.5), since the mathematical forms
of the hydrostatic and continuity equations have re-
mained essentially unchanged while the gradient, tan-
gential momentum, and thermodynamic equations
have all been considerably simplified.

Although the system (2.1)—(2.5) is closed in the un-
knowns u, R, w, 0, ¢, and the system (2.6)—(2.10) is
closed in the unknowns u*, r, w*, § and ¥, they are
not in forms convenient for numerical integration.
More suitable forms can be obtained in one of two
ways. The first method involves replacing one of the
prognostic equations, (2.2) or (2.5), with a diagnostic
relation for the transverse circulation (pu, pw). Simi-
larly, in the transformed system one of the prognostic
equations (2.7) or (2.10) can be replaced with a diag-
nostic equation for the transverse circulation (pou*,
pw*). The second method involves elimination of the
transverse circulation components to obtain elliptic
equations for ¢, and ®7. This method is presented in
Schubert et al. (1984) and Thorpe (1985) and will not
be discussed here.

To derive the transverse circulation equation for the
system (2.1)-(2.5), we first substitute (2.3) into (2.5)
and (2.1) into (2.2) to obtain

G + Apw — Bpu = f— 0, (2.16)
0
¢n — Bpw + Cpu = 0, 2.17)
where
g a6
=& — 2.18
4= 09z’ (2.182)
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Using the continuity equation (2.4) to define a stream-
function y so that

- .‘?! gr_\_[/) (2.19)

9z’ ror

and eliminating the tendency terms between (2.16) and
(2.17), we obtain the transverse circulation equation

(ou, pw) = (

_ 890
Ly = 0o (2.20)
where
90 ), po )
L )—ar(A ror +B az)
8 (), &)
+az (B ror +C 97 ) (2.21)

The boundary conditions for (2.21) are that Y = 0 on
the top, bottom, and inner boundaries, and that ¢y —
Oasr— oo.

Equation (2.20) was first derived by Eliassen (1952),
who discussed the characteristics of the transverse cir-

. culation resulting from point sources and jumps in the

forcing, which appears on the right-hand side. The
coeflicients A, B and C physically represent the static
or gravitational stability, baroclinity, and inertial sta-
bility of the vortex, respectively. As shown by Eliassen
(1952), air parcels move in the (r, z).plane in response
to sources of heat against two stabilizing influences:
static stability, which provides resistance to vertical
displacements, and inertial stability, which provides
resistance to radial displacements. The system of equa-
tions given by (2.2) and (2.20), along with necessary
auxiliary relations, is sometimes referred to as the quasi-
balanced prognostic system and has been successfully
used to simulate the time evolution of axisymmetric
tropical disturbances (e.g., Ooyama, 1969a,b; Sund-
qvist, 1970). The major advantage of this system is
that the transient aspects of geostrophic or gradient
adjustment (i.€., gravity wave motions) are filtered. The
balanced system also makes it easier to see how the
transverse circulation is nonlinearly coupled with the
thermodynamic and tangential momentum fields
through the variable coefficients 4, B and C.

- In linear CISK theory, the governing equations are
linearized about a basic state at rest. Consequently, the
baroclinity term drops out of the problem, while the
inertial stability term is approximated by f2, and the
static stability term is a property of the basic state. Al-
though this approximation may be acceptable for the
very early stages of tropical cyclone genesis, its appli-
cability over the whole range of tropical cyclone de-
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velopment is certainly questionable. It seems obvious
that a linear approach to the problem of tropical cy-
clone development cannot begin to provide a complete
picture of the important dynamical processes contrib-
uting to intensification and structure.

To derive the transverse circulation equation for the
radially transformed system (2.6)—(2.10), we follow a
similar procedure. First substitute (2.8) into (2.10) and
(2.6) into (2.7) to obtain

Br + qow* = f 0, 2.22)
0

$pr + Spu* = 0, (223)

where the potential vorticity g and the inertial stability
s are given by :

3
= J—ff‘; pat (2.242)
R4
ps =f? s (2.24b)

Using the continuity equation (2.9) to define a stream-
function ¢y* so that

_H* ORy*
'9Z * ReR

and eliminating the tendency terms between (2.22) and
(2.23), we obtain the transverse circulation equation

g 9Q

(ou*, pw*) = ( ) ’ (2.25)

T (2.26)
where
w o O (LORC DY, 8 ( a)
L )’aR(q ROR )+az(s oz ) 227

The boundary conditions for (2.26) are that y* = 0 on
the top, bottom, and inner boundaries and that y* —
Oas R — o0.

Note that the form of the diagnostic equation in the
transformed system has been greatly simplified since
it contains no cross-derivative terms; g plays the role
of static stability, and s the role of inertial stability. As
long as the vortex remains stable, i.e., ¢ > 0 and
5> 0, (2.26) will remain elliptic. In the time integrations
that are presented in section 4, we have chosen to use
the prognostic equation (2.7) and the diagnostic equa-
tion (2.26) for y* along with other necessary diagnostic
relations (see Appendix). In addition to the advantage
of being mathematically simpler, this system can be
solved using fewer degrees of freedom in the horizontal
because the inner core region is automatically stretched
as the model vortex develops.

One additional comment is that by using (2.11),
(2.15), (2.19) and (2.25), we can easily show that Ry*
= ry. Thus, isolines of RY* drawn in the (R, Z) plane
give the transverse mass flux (pRu*, pRw*) while the
same isolines drawn in the (7, z) plane (thus distorted)

. give the transverse mass flux (pru, prw).
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3. Energetics and efficiency

From the balanced system, we can derive the fol-
lowing energy equations

dp
:1; =H-C, 3.1
dK
Z C, (3.2)
where
P= ff ¢, Tprdrdz, (3.3)
K= f f %vzprdrdz, (3.4)
H= f f Qprdrdz, 3.5)
_ g
C= f f o whprdrdz. 3.6)
0

The radial integrals in (3.3)-(3.6) extend from r equals
zero to some large but finite radius, and the vertical
integrals from z equals zero to z7. Thus, Pand K denote
the total potential and kinetic energies of the atmo-
sphere, H the total heating, and C the rate of conversion
of total potential energy into kinetic energy.

Because w is diagnostically related to Q, it is possible
to express C in a form similar to H. Although this can
be accomplished in either (7, z) space or (R, Z) space,
we shall proceed using the (R, Z) formulation for
mathematical convenience. With the relations (2.11)
and (2.15), we can write (3.6) as

C= f f ’05 w*pRARAZ. G.7)
0

Using (2.25) and integrating by parts, (3.7) becomes

C=~ff¢*£§2RdeZ.

6y OR (3:8)

In analogy with Eliassen (1952), let us now define x*
to be the solution of

3.9

with the same homogeneous boundary conditions as
(2.26). We can interpret x* as the streamfunction for
a transverse displacement field. This field does not di-
rectly depend on the heating, but only on the instan-
taneous vortex structure. Substituting (3.9) into (3.8),
we obtain

C= -—ff Y*L*x*RdRdZ = —ff X*L**RdRdZ.
(3.10)
The last step follows from the self-adjoint property of
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the linear operator L*. Using (2.26) in (3.10) and per-
forming a final integration. by parts, we obtain

C= f f 7*QpRdARdZ, 3.11)
where ) B (ﬂ% .
pn* = (C—‘(’g—" - Z) _RFXE' (3.12)
By analogy with (2.15), we define
(3.13)

i =}n*,

so that (3.11) can be expressed in (7, z) space as

C= ff nQprdrdz. (3.14)
Using (3.5) and (3.14), we can define
c ff 1Qprdrdz

=== (3.15)

as the overall efficiency of the energy conversion.

In analogy with Lorenz (1967, p. 105), we shall refer
to n(r, z, t) as the dynamic efficiency factor (in contrast
with the thermodynamic efficiency factor introduced
by Lorenz and discussed by Johnson, 1970) and 5(f)
as the system efficiency. According to (3.15), the dy-
namic-efficiency factor is a measure of the effectiveness
of the heating at any point in producing kinetic energy.
The functions 5(r, z, £) and 5(¢) are useful diagnostics
which can aid in the interpretation of observational
data as well as numerical modeling results (both bal-
anced and primitive-equation assummg an approxi-
mate balance exists).

4. Numerical integrations
a. Time evolution of y(r, z)

- In this section, we present the results of several nu-
merical integrations using the transformed balanced
system discussed in section 2. Details concerning the
numerical methods utilized in the solution of this sys-
tem of equations are presented in the Appendix. We
begin by reproducing the results of the nonlinear prim-
itive-equation experiment presented in section 1 where
the heating is a prescribed function of space and in-
variant in time. The time evolution of the magnitude
and radial location of the maximum low-level tangen-
tial wind for the transformed balanced system are
shown by the solid lines in Fig. 3. The results of this
balanced experiment are nearly identical to the prim-
itive-equation results, producing a slightly stronger
vortex (about 1 m s™! difference) by 120 hours. The
final radius of maximum wind is also somewhat
smaller, but this is more the result of increased reso-
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FIG. 3. Radius of maximum wind and maximum low-level tan-
gential wind as a function of time for the invariantly forced balance
system. Dotted lines correspond to a maximum forcing at 400 mb,
solid lines correspond to maximum forcing at 500 mb, and dashed
lines correspond to maximum forcing at 600 mb.

lution associated with a stretching of the radial coor-
dinate in the interior low levels (see Schubert and Hack,
1983). The two-dimensional structure of the vortex is
also quite similar to the primitive-equation solution
where the largest observed difference is a slightly smaller
radial position of the peak in the upper-level anticy-
clonic circulation.

The primitive-equation experiments presented in
section 1 suggested that nonlinearities enable a large-
scale atmospheric vortex to become more efficient at
converting total potential energy (which is generated
by convective-scale diabatic heating) to the kinetic en-
ergy of the quasi-balanced flow. In section 3, we intro-
duced the mathematical concept of a dynamic effi-
ciency factor, denoted by the variable 7. This field can
be readily diagnosed from knowledge of the instanta-
neous large-scale tangential momentum field, which
in our analysis is uniquely related to the thermody- -
namic field by means- of thermal wind balance. There-
fore, if we have interpreted the primitive-equation so-
lutions correctly, we should see significant changes in
this dynamic efficiency factor as our balanced model
vortex develops.
~ The time evolution of the tangen‘ual circulation for
the balanced experiment is shown in Figs. 4 and 5,
along with the corresponding 7 field. As suggested by
our primitive-equation experiments, the 7 field and the
system efficiency # dramatically increase in magnitude
as the vortex circulation intensifies. At 24 hours, the 7
field has a maximum amplitude of just over 0.5 percent
in the center of the vortex at a height of 10 km (ap-
proximately 250 mb). As the model vortex circulation
strengthens, the dynamic efficiency factor grows in both
magnitude and vertical extent in response to large in-
creases in potential vorticity, inertial stability, and the
radial temperature gradient in the low to midtropo-
sphere. By the end of the numerical integration at 120
hours, the dynamic efficiency factor has reached a peak
value of slightly more than 10 percent in the interior
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FIG. 4. Tangential momentum (left set of panels) and dynamic efficiency factor 5(r, z) in the region r = 0 to r = 1000 km at 24, 48 and 72 hours
for the invariantly forced balance model. The contour interval is 1 m s~ for the momentum field and 0.1 percent for the dynamic efficiency factor.
Negative values are denoted by dashed lines. See text for further discussion.

upper troposphere of the model vortex, exceeding 2
percent for the majority of the region inside 50 km.
During the period from 12 to 120 hours, the system
efficiency 7 linearly increases from slightly more than
0.1 percent to approximately 1.25 percent (see Fig. 6).
At the same time, we observe that the kinetic energy
of the system grows quadratically with respect to time,
a result that is energetically consistent with the linear
growth rate of 7.

These results confirm the hypothesis that, as a large-
scale atmospheric vortex grows in intensity, its ability
to extract kinetic energy from latent heat released in
deep cumulus convection also increases. This increase
in efficiency contributes to an interesting nonlinear
coupling between the large-scale circulation and its re-
sponse to diabatic heating. The dynamic efficiency fac-
tor, which is completely determined by the instanta-

neous global structure of the tangential circulation, de-
termines how the tangential circulation responds to a
diabatic heat source, which in turn further modifies
the dynamic efficiency factor. This nonlinear feedback
is what is responsible for the hurricane-like solution,
despite the fact that the time evolution of the diabatic
heat source is completely decoupled from the vortex
dynamics in these experiments. What is most intriguing
about the results is the relatively rich structure of the
7 field, even though the structure of the tangential mo-
mentum field is for the most part unremarkable.

b. Development sensitivity to vertical heating distri-
bution

Although in the middle stages of the model vortex
evolution, % exhibits a relatively uniform vertical dis-
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FIG. 5. Tangential momentum (left set of panels) and dynamic efficiency factor (7, z) in the region r = 0 to r = 250 km at 72, 96 and 120 hours
for the inyariantly forced balance model. The contour interval is 2 m s™* for the momentum field and 0.5 percent for the dynamic efficiency factor.
Negative values are denoted by dashed lines. See text for further discussion.

tribution in the interior regions, the early and late stages
tend to favor a maximum 7 in the upper troposphere
between 9 and 10 km (between 250 and 300 mb). This
implies that the vortex is not necessarily as efficient as
it could be at converting total potential energy to kinetic
energy in these regions since the vertical distribution
of the prescribed heating has its maximum amplitude
some 200 mb lower in the atmosphere. This observa-
tion prompted two additional numerical experiments
to assess the sensitivity of our model vortex develop-
ment (and the structure of the 5 field) to the vertical
distribution of the heating. We elected to rearrange the
prescribed heating so that the vertically integrated value
would remain constant. The two heating distributions
we chose to examine had maximum amplitudes at 400
mb (z = 7.1 km) and 600 mb (z = 4.2 km). These

profiles can be generated using values of 0 = 13.8°C
day™!, & = 1.81 (400-mb peak) and Q = 4.52°C day™,
a = —0.554, (600-mb peak) in Eq. (1.7).

The results of the two experiments were somewhat
counterintuitive since the experiment with a heating
maximum at 400 mb (closer to the preferred amplitude
maximum for 7 in the previous example) develops very
slowly, while the experiment with a heating maximum
at 600 mb develops considerably more rapidly than
the control experiment (see Fig. 3). The most aston-
ishing aspect of these experiments, however, was that
such small changes in the vertical structure of the heat-
ing could produce such large differences in the model
vortex development. Other investigations have also -
suggested that the development of both tropical and
extratropical vortices is dependent on the vertical
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FIG. 6. Time evolution of the system efficiency parameter 7 (per-
cent) and the total kinetic energy (X 10" J) for the invariantly forced
balance system. Dotted lines correspond to a maximum forcing at
400 mb, solid lines correspond to maximum forcing at 500 mb, and
dashed lines correspond to maximum forcing at 600 mb.

structure of the diabatic heating, although these studies
generally made use of models with very crude vertical
resolution making it difficult to determine the degree
of sensitivity (e.g., Yamasaki, 1968; Ooyama, 1969;
Koss, 1976; Anthes, 1977; Anthes and Keyser, 1979;
Anthes et al., 1983). The projection of the three heating
profiles onto the vertical normal modes (see Appendix)
showed only modestly different amplitude spectra, but
a clear tendency for more amplitude in the higher order
modes as the peak in the heating was moved lower in
the troposphere. Since there is this tendency for more
energy to be projected onto modes with smaller Rossby
radii, as the heating maximum is moved lower into
the troposphere, it could be argued (from a linear point
of view) that the dynamic response to the forcing should
be expected to become more radially confined as well.
If such an argument were to be qualitatively correct,
we might not then expect to see significant differences
in the time evolution of the system efficiency 7. This
is indeed the case, since the system efficiency grows in
a very similar way for all three vortices, as does the
kinetic energy (see Fig. 6) despite large differences in
the central core development. Consequently, for this
particular set of experiments, in an integrated sense
the model vortices look quite similar to one another,
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even though their detailed structure is clearly quite dif-
ferent.

It is worthwhile to examine the time evolution of »
in the interior for each of these experiments as shown
in Fig. 7. Upper-level heating produces a vortex with
a pronounced peak in the dynamic efficiency factor
near z = 10 km that simply grows in amplitude, i.e.,
the vertical structure remains unchanged. In the case
of lower-level heating, the vortex that is generated yields
a more uniformly distributed profile of # (slightly bi-
modal) in the early stages of development. This profile
quickly gives way to a unimodal structure for which
the maximum amplitude grows rapidly with time as it
moves upward through the troposphere. The middle-
level (or 500 mb) heating experiment produces results
somewhere between. This figure is meant to show that,
although the system efficiency 7 is very similar
throughout the development of all three model vortices,
the distribution of n(r, z) is considerably different. Note
that, in the case of upper-level heating, n has relatively
low amplitude and is confined to a fairly shallow at-
mospheric layer, resulting in low conversion of poten-
tial to kinetic energy (in a vertically integrated sense).
The vertical distribution of the dynamic efficiency fac-
tor associated with the vortex generated by lower-level
heating has much larger amplitude, much greater ver-
tical extent, and in fact becomes phase locked with the
heating profile in the middle stages of development
maximizing this energy conversion. This figure suggests
that for these three examples the distribution of the
dynamic efficiency factor in (r, z) space is a far more
useful diagnostic than our global measure of efficiency
with respect to determining how rapidly a vortex might
develop.

We wish to make one final observation regarding
the two-dimensional structure of the efficiency factor
in each of these experiments. The distribution of tan-
gential momentum and the associated 7 field is shown
in Fig. 8 for the point in time at which each of the
model vortices achieves a maximum low-level tangen-
tial wind of approximately 15 m s™'. The experiment
with upper-level heating achieves this intensity at 120
hours, middle-level heating at 84 hours, and the low-
level heating at 60 hours. Although parametrically
equal in intensity, these vortices are quite different in
their two-dimensional structure as noted earlier. The
vortex generated by the upper-level heating is quite
deep and relatively diffuse in the lower troposphere,
while the vortex produced by the lower-level heating
tends to be more shallow and tightly organized. Note
that the vertical location of the maximum in 5 appears
to be associated with the location of the greatest vertical
wind shear. Since the vortex is in thermal wind balance,
this region of peak shear is also associated with a max-
imum in the radial gradient of 4, which appears (in
transformed space) on the right-hand side of the elliptic
equation that determines x* from which the dynamic
efficiency factor 7 is computed.
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FIG. 8. Tangential wind (left panels) and dynamic efficiency factor 5(r, z) for 400 mb maximum heating at 120 hours (top row), 500 mb maximum
heating at 84 hours (middle row), and 600 mb maximum heating at 60 hours (bottom row) in the region r = 0 to r = 250 km. Each vortex has a
maximum low-level tangential wind of 15 m s~!, where the contour interval is 2 m s~ for the wind field and 0.5 percent for »(r, 2).

c. Development sensitivity to horizontal heating dis-
tribution

In the previous subsection, we saw a large sensitivity

of the inner-core development to small changes in the

vertical structure of the imposed heating, even though
in an integrated sense the vortices were energetically
quite similar. In this section, we examine the sensitivity

of model vortex development to variations in the hor-

izontal distribution of the heating. As we saw in the
previous set of numerical experiments, each of the vor-
tex structures has a maximum dynamic efficiency fac-
tor in the inner-core region, the same region where the
diabatic heat source is a maximum. Therefore, we were
motivated to conduct the following set of experiments
to examine the development characteristics of a model
vortex where the heating distribution has a maximum
some distance from the center of the computational

FIG. 7. The left panels show the vertical distribution of the heating profile Q(0, z)/c,
(heavy solid lines), and the dynamic efficiency factor 7(0, z) (percent), and the panels on
the right show the quantity 7Qp (J m~3s™!), where the area under these curves is proportional
to the vertically integrated contribution to the total energy conversion, at 24 (solid), 48
(dashed), 72 (dotted), 96 (dash-dotted) and 120 (heavy dashed) hours for the invariantly

forced balance system.
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domain. We elected to distribute the heating using the
analytic relation

r
Zq(r, z) = aQ(2) — e3!! "M, 4.1)
(4

o
and examined heating distributions with r, = 100, 150
and 200 km. One of the problems in redistributing the
forcing in the horizontal is that it becomes more dif-
ficult to maintain an integral constraint similar to our
earlier experiments. Therefore, we have used a nor-
malization so that for 7y = 100 km the area-averaged
heating inside 250 km is the same as the area-averaged
heating inside 250 km in the previous examples. This
choice leads to a slight increase of less than S percent
in the domain-averaged heating with respect to the
earlier experiments. For the remaining two experiments

(ro = 150 and 200 km), the normalization coefficient -

a is chosen so that the domain-averaged heating is
equivalent to the domain-averaged heating for the ry
=100 km case. The resulting horizontal heating dis-
tributions are contrasted with the horizontal heating
distribution for the earlier set of experiments in Fig. 9.
The maximum amplitude in the vertical distribution
of the heating profile is at 500 mb in all cases. Note
that, as rg is increased, more of the total heating is
removed from the interior regions of the computational
domain.

The three numerical experiments yield vastly differ-
ent solutions in every regard. For the case ro = 100
km, the model vortex develops a peak low-level tan-
gential wind of just over 16 m s™!, as the radius of
maximum wind collapses from 200 to 100 km. When
to = 150 km, the vortex attains a maximum tangential
wind of almost 8 m s™! while the radius of maximum
wind collapses from 300 to 220 km. And for the sim-
ulation where r, = 200 km, we generate a vortex that

TV T T T

Qlr)

100 200 300 400 500 600 700
r{km)

FIG. 9. Radial distribution of the diabatic heat source used in nu-
merical results of section 4. Peaks in heating occur at r = 0 km
(solid), r = 100 km (dashed), r = 150 km (dash-dotted), and r = 200
km (dotted). See text for additional discussion.
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reaches a mere 5 m s~/ maximum tangential wind as
the radius of maximum wind collapses from 400 to
350 km. In contrast to the earlier results, we observe
a distinctly dissimilar behavior in the time evolution
of the system efficiency 7 for each of the experiments.
These results are shown in Fig. 10 in which we have
also included the result of an earlier middle-level heat-
ing experiment for purposes of comparison. Note both
differences in the slope of the resulting n curves, as well
as a clear sepdration at all times. Although the total
diabatic heating is equivalent in each of these experi-
ments (and nearly identical to the earlier set), the con-
version of total potential energy to the kinetic energy
of the balanced flow becomes much less efficient as the
heating is removed from the region where the vortex
develops the highest dynamic efficiency factor. In this
case, the system efficiency parameter 7 becomes a much
better discriminator between a rapidly developing vor-
tex and a more slowly developing vortex.

5. Concluding remarks

We have presented a mathematical argument that
relates the efficiency of a large-scale atmospheric vortex
to the instantaneous global structure of the tangéntial
momentum field for balanced, inviscid, axisymmetric
flow. By integrating the transformed balanced system
of equations forced with an invariant diabatic heat
source, we have demonstrated that a vortex becomes
more efficient at converting total potential energy to
balanced rotational motion as it increases in intensity.
This increase in éfficiency, a consequence of the in-
creasing potential vorticity, inertial stability, and radial
temperature gradient of the intensifying vortex circu-
lation, results in a nonlinear instability of the vortex
for a specified diabatic forcing. That is, the dynamic
efficiency factor depends totally upon the immediate
state of the large-scale circulation, which in turn evolves
in response to the relative positions of this efficiency
field and the specified diabatic forcing.

Two useful diagnostic parameters, the dynamic ef-
ficiency factor n(r, z, t) and the system efficiency (),
were introduced in section 3, and were utilized in the
analysis of the numerical experiments conducted in
section 4. The global parameter 7(¢f) is apparently most
suitable for interpreting whether an optimal orientation
of the diabatic heating field and dynamic efficiency
factor exists. The distribution of the dynamic efficiency
factor appears to be most valuable in determining the
detailed structure of the dynamic response, given
knowledge of the diabatic heating distribution. An in-
teresting application of these concepts would be to
compute values of 9(r, z, £) and 7(¢) from actual ob-
servations, especially during a concentric eyewall cycle
as described by Willoughby et al. (1982).
~ In addition to providing insight into the time evo-
lution of the dynamic efficiency factor and system ef-
ficiency, the numerical experiments conducted in sec-
tion 4 yielded additional evidence that the dynamic
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FiG. 10. Time evolution of the system efficiency parameter 7 (per-
cent) and the total kinetic energy (X 10" J) for the invariantly forced
balance system. Dotted lines correspond to a maximum forcing at
200 km, dash-dotted lines correspond to maximum forcing at 150
km, dashed lines correspond to maximum forcing at 100 km, and
the solid lines correspond to a maximum forcing at the origin and
are included for comparison with Fig. 6.

response to a diabatic heat source is strongly dependent
on the vertical distribution of the heat source. Inter-
estingly, the total conversion of potential to kinetic
energy appears to be independent of the vertical struc-
ture of the heating, as seen in the time evolution of the
system efficiency parameter. The horizontal scale of
the dynamic response, however, is extremely sensitive
to the vertical distribution of the heat source where the
response becomes more localized when the heating has
a larger projection onto higher order vertical normal
modes.

It is a bit discouraging that small changes in the dia-
batic heating profile can have such a profound impact
on the evolution of the large-scale flow when one con-
siders the current state of cumulus parameterization
theory. Our results certainly underscore the need to
develop a deeper understanding of the physical pro-
cesses that determine the convective-scale response to
large-scale forcing so that they may be incorporated in
cumulus parameterization schemes. This response
takes the form of a direct feedback to the large-scale
flow through cumulus-scale flux divergence and source/
sink terms. In addition to the direct action of the clouds,
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it is also essential to describe accurately their impact
on the large-scale radiation fields since their radiative
properties could certainly prove to have an important
modulating effect on the vertical distribution of the
diabatic heating (e.g., Albrecht and Cox, 1975).

It is evident that the development of tropical vortices
is considerably more complex than can be explained
by linear theory. Although many of the conceptual ele-
ments of early linear attempts to understand tropical
cyclone formation are surely qualitatively valid, non-
linear processes clearly begin to dominate the charac-
teristics of tropical cyclone development at a very early
stage. We would hope that, by generalizing these results
to accommodate three-dimensional curved flow, it
might be possible to understand better many of the yet
unresolved mysteries of hurricane structure and for-
mation.
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APPENDIX
Numerical Methods

The numerical integration of the transformed bal-
ance system is accomplished using a finite-difference
method. The radial domain is divided into 7 equal in-
tervals separated by the 7 + 1 points R; = iAR (i = 0,
1,2, -+« I), while the vertical domain is divided into
J equal intervals separated by the J + 1 points Z;
=jAZ(j=0,1,2, --- J). Staggered with respect to
the i, j points are the points R;;,,, = (i + 1/2)AR and
Zipp = (j + 1/2)AZ. The distribution of the variables
over these points is shown in Fig. 11. The inner
(i = 0) and outer (i = T) boundaries are columns along
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F1G. 11. Finite-difference grid for solution of the transformed balan:
system of equations. .






