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ABSTRACT

The spiral bands that occur in tropical cyclones can be conveniently divided into two classes—outer bands
and inner bands. Evidence is presented here that the outer bands form as the resuit of nonlinear effects during
the breakdown of the intertropical convergence zone (ITCZ) through barotropic instability. In this process a
zonal strip of high potential vorticity (the ITCZ shear zone or monsoon trough) begins to distort in a varicose
fashion, with the potential vorticity (PV) becoming pooled in local regions that are connected by filaments of
high PV. As the pooled regions become more axisymmetric, the filaments become thinner and begin to wrap
around the PV centers.

It is argued that inner bands form in a different manner. As a tropical cyclone intensifies due to latent heat
release, the PV field becomes nearly circular with the highest values of PV in the cyclone center. The radial
gradient of PV provides a state on which PV waves (the generalization of Rossby waves) can propagate. The
nonlinear breaking of PV waves then leads to an irreversible distortion of the PV contours and a downgradient
flux of PV. The continuation of this process tends to erode the high PV core of the tropical cyclone, to produce
a surrounding surf zone, and hence to spread the PV horizontally. In a similar fashion, inner bands can also
form by the merger of a vortex with a patch of relatively high PV air. As the merger process occurs, the patch
of PV is quickly elongated and wrapped around the vortex. The resulting vortex is generally larger in horizontal
extent and exhibits a spiral band of PV.

When the formation of outer and inner bands is interpreted in the context of a normal-mode spectral model,
they emerge as slow manifold phenomena; that is, they have both rotational and (balanced or slaved) gravitational
mode aspects. In this sense, regarding them as simply gravity waves leads to an incomplete dynamical picture.

VoL. 50, No. 20

1. Introduction

A typical hurricane consists of an azimuthally av-
eraged or symmetric flow and asymmetric or banded
features. The banded features are often most evident
in radar images such as that shown in Fig. 1 (from
Gray 1964) and satellite images such as that shown in
Fig. 2. From these examples and the numerical inte-
grations performed here, we might conveniently dis-
tinguish two types of bands-—the inner bands of Fig.
1 and the outer bands of Fig. 2. Inner bands lie close
to the vortex center and, while evident on radar images,
are often not visible on satellite images because of the
cirrus overcast. Outer bands are typicaily located more
than 500 km from the vortex center and can be quite
long and narrow.

Since the late 1940s, there have appeared many
theoretical papers on hurricane spiral bands. Most of
these papers fall into two general classes—the gravity
wave theories (e.g., Kurihara 1976; Willoughby 1978)
and the boundary-layer asymmetry theories (e.g., Fung
1979; Shapiro 1983). The gravity wave theories, which
have been reviewed by Anthes (1982, section 2.3.6),
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Elsberry et al. (1987, section 2.6.3) and Willoughby
(1988), view the spiral bands as regions of upward
motion and condensation caused by propagating in-
ternal gravity waves. The theories do not agree as to
whether the internal gravity waves are forced by con-
vection in the inner regions of the tropical cyclone or
by interactions of the outer regions of the tropical cy-
clone with its environment. The hypothesis of Fung’s
boundary-layer theory is that bands are produced
through dynamic instability of boundary-layer flow
structures. In contrast, Shapiro’s model does not in-
volve dynamic instability but illustrates how quasi-sta-
tionary bands can form in a boundary layer forced by
an axisymmetric, moving low pressure pattern. A sim-
ilar effect is produced by the three-layer tropical cyclone
model of DeMaria and Schubert (1984, Fig. 11).
There has been little discussion in the literature about
the possibility that hurricane bands are manifestations
of PV dynamics, although the above boundary-layer
theories could certainly be interpreted in this way. A
notable exception is the work of McDonald (1968),
who drew attention to qualitative similarities between
hurricane asymmetries and planetary-scale Rossby
waves. In this paper, we shall argue (sections 2 and 3)
that inner bands form through potential vorticity (PV)
wave breaking and vortex merging processes. We shall
also argue (section 4) that outer bands owe their ex-
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FIG. 1. Radar composite of Hurricane Cleo on 18 August 1958
when it was just east of Bermuda and moving NNE at 7 ms™'.
Maximum winds were approximately 47 m s~! and minimum surface
pressure 970 mb (from Gray 1964).

istence to the nonlinear potential vorticity dynamics
associated with the breakdown of the ITCZ. In a certain
sense outer bands are remnants of the ITCZ. The po-
tential vorticity arguments offered here sharply distin-
guish the present work from previous gravity wave the-
ories of hurricane spiral bands.

The approach adopted here involves numerical sim-
ulations with the simplest model that retains both ro-
tational and gravitational modes, that is, an f-plane
shallow-water model. We shall simulate features in the
potential vorticity field that bear a striking resemblance
to the patterns seen in the convective cloud fields of
Figs. 1 and 2. Our experience with the shallow-water
model indicates that banded features in the PV field
are ubiquitous and robust. Since, however, the model
is not capable of predicting clouds and the observa-
tional data in hurricanes has not yet been used to pro-
duce fine grain PV maps, the connection between the
model output and the satellite and radar observations
remains indirect but suggestive. In particular, it does
not seem unreasonable to expect that flow structures
that organize the PV in spiral bands can also organize
other fields (such as the convective field ) into the same
bands.

All the numerical integrations described here were
performed with the fplane shallow-water equations

a_u__ f+a_v‘a_u v
it ax dy

+_¢9_ gh+l(u2+vz) =F, (1.1)
ax 2
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at ax dy

on the doubly periodic domain 0 < x < L,, 0 <y
< L,. In (1.1)-(1.3), u# and v are the eastward and
northward components of velocity, 4 the fluid depth,
and F, G, S the effects of friction and mass sources or
sinks. In all but one of the experiments presented here,
the friction and mass source-sink terms will be set to
zero, in which case the system (1.1)-(1.3) possesses
the potential vorticity conservation principle DP/Dt
=0, where D/Dt = 8/dt + ud/adx + vad/ady is the total
derivative and P = (f+ dv/dx — du/dy)H/h the po-
tential vorticity, with H denoting the constant mean
depth of the fluid. The constant factor H is included
in the definition of P so that potential vorticity will
have the same units as vorticity. With this definition
potential vorticity can be interpreted as the vorticity a
column of fluid would acquire if the actual depth 4
were changed to the reference depth H. The numerical
method used to solve (1.1)-(1.3) is the normal-mode
spectral method described in appendix A.

2. Band formation through wave breaking

We begin by reviewing how the concept of PV
(Rossby) wave propagation is tied to the concept of
gradients of PV on isentropic surfaces and how, in a
nearly symmetric tropical cyclone, the circular isolines
of PV (with the highest values of PV in the cyclone
center) provide a state on which these waves can prop-
agate.

a. The concept of potential vorticity (Rossby) waves
in tropical cyclones

The most elementary treatment of Rossby waves
(Platzman 1968) begins with the linearized (about a
resting basic state) nondivergent, barotropic, $-plane
model in which the northward gradient of basic-state
absolute vorticity is the constant 8. Under the conser-
vation of absolute vorticity, a sinusoidal disturbance
causes fluid particles that are displaced northward to
acquire a clockwise spin while fluid particles displaced
southward acquire a counterclockwise spin. A fluid
particle, which has not been displaced and lies between
northward displaced particles to its west and southward
displaced particles to its east, will be induced to move
southward by the clockwise turning particles to the west
and the counterclockwise turning particles to the east.
Thus, the whole wave pattern will propagate to the
west.



3382

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 20

FIG. 2. An example of outer hurricane convective bands. GOES IR images of the eastern Pacific Ocean at 1646 UTC 26 July
(a) and 3 August (b) 1988. The striking outer bands emanating from the north and south edges of the tropical cyclone on the
left of the 3 August image have formed during ITCZ breakdown and are 1500~2000 km in length.

A more general treatment of Rossby waves (Hoskins
et al. 1985, section 6) begins with consideration of the
Rossby-Ertel potential vorticity field displayed on an
isentropic surface. A reasonable basic state is one in
which the isolines of PV are oriented west—-east with
the higher values of PV to the north. The poleward
gradient of PV provides a generalized 8 effect. If the
PV contours (which are also material contours) are
perturbed in a sinusoidal fashion, a row of alternating

positive and negative PV anomalies is produced. By -

the invertibility principle (which can take a variety of
forms depending on the balance approximation being
used) these PV anomalies have an associated flow that
further advects the PV field. Just as in the elementary
treatment discussed in the previous paragraph, the as-
sociated flow makes the PV anomalies propagate west-
ward relative to the basic flow.

In all but the very upper-tropospheric part of an axi-
symmetric tropical cyclone, the isolines of PV are cir-

cles with the highest values of PV found in the center
of the cyclone. According to the general argument given
in the previous paragraph, this axisymmetric PV field
provides a basic state with a monotonic inward increase
of PV on which waves can propagate. If the PV pattern
is only slightly disturbed from circular isolines, there
is a restoring effect and PV wave propagation—the PV
contours simply undulate. In certain circumstances,
which will be explored shortly, the positive PV anom-
alies begin to elongate and form spiral tongues of high
PV fluid that become thinner and more circular with
time. Before exploring this wave breaking process, let
us first consider the simplest model of linear PV waves
in hurricanes.

We begin with linearized nondivergent barotropic
dynamics on a basic-state tangential flow that varies
with radius. The basic-state vorticity is assumed to have
the top hat form given below in (2.3). The corre-
sponding basic-state streamfunction has the form
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FI1G. 2. (Continued)

Y- 2
lz/(r)=%£{2( r )5

riin(r/n),

if 0<r<r
. (2.1)
if rns<r<ow,

where £ and r; are constants. One differentiation of
(2.1) yields the basic-state (Rankine) tangential flow

ﬁ(r)=ﬂ=§e{

r, if 0<r<r

(2.2)

dr r2/r, if r<r<oo,

while a second differentiation yields the piecewise con-
stant vorticity pattern

- _ d(rﬁ) - _i d*\z - éa
o) rdr ’d’(r dr) [O, if rn<r<o.
(2.3)

if O<r<r|

! In this paper, the symbols u, v will be used to denote eastward
and northward components of velocity when working in Cartesian
coordinates and to denote radial and tangential components when
working in cylindrical coordinates.

Now suppose the interface between the two vorticity
regions is perturbed by an amount 7(¢, t) in the si-
nusoidal fashion n( ¢, ¢) = 7e'"*~°" where 7 is a com-
plex constant, m is the tangential wavenumber, and ¢
is the frequency. The interface perturbation results in
a circular chain of vorticity anomalies. Away from the
interface the vorticity is unperturbed from its basic-
state value so that V% = O for r # r;, or, assuming
Wr, ¢, 1) = W(r)e'me=,

d (rdl) -m*¥ =0 for r#+r. (24)
dr

As solutions of (2.4) bounded at r = 0 and as r = oo,

we have

Y(r) = 2.
" w(r./r)’”, if (23)

/)™, if 0<rs<nr
<r<o,

where ¢ is a constant that must now be related to 7.
The continuity of v at r; + 7 yields
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which, when evaluated at r, + 7 and linearized, yields
my = — 1 &rq. This is the desired relation between ¢
and #. The linearized equation governing the move-
ment of the interface is

dn _ dn im

S tos ===

ot 1203 r
where w(r) is defined by ¥ = r@. When (2.5) is used
in (2.6) we obtain the dispersion relation

1=a—i=%g(1—;lz-).

(2.6)

m 2m (2.7)

Thus, wavenumber m = 1 is stationary and wavenum-
bers m = 2, 3, 4 move, respectively, at 1/2, 2/3, and 3/4
the speed of the basic-state tangential flow.

The above analysis demonstrates that a vortex gen-
erally possesses a restoring mechanism that opposes
departures from axisymmetry. This is often referred to
by meteorologists as the Rossby restoring mechanism.
Since the above analysis was first given by Sir William

Thomson (Lord Kelvin) in 1880 and was summarized .

by Lamb (1932, pp. 230-231), attributing the origin
of this concept to Rossby (1939) is not historically ac-
curate. Calling the waves obeying the dispersion rela-
tion (2.7) Kelvin waves, however, would be confusing
for obvious reasons. Here we shall refer to these waves
as PV waves, or more conventionally but less accu-
rately, simply Rossby waves.

b. Evolution of noncircular PV distributions—wave
breaking and surf zones

Now we shall describe a flow evolution that culmi-
nates in PV wave breaking. Since PV is materially con-
served the entire process is simply an advective rear-
rangement of PV. This concept of wave breaking was
first introduced for theoretical work by Deem and Za-
busky (1978a,b) and Zabusky et al. (1979) in their
contour dynamics studies of finite area vortex patches
and for observational work by McIntyre and Palmer
(1984, 1985) in their analysis of the extratropical mid-
dle stratosphere. Numerical simulations of Rossby
wave breaking were later presented by Juckes and
Mcintyre (1987). In these studies, a representative is-
entropic surface in the stratosphere was divided qual-
itatively into two distinct regions—the main vortex,
described as an area of high PV with sharp PV gradients
at its edge, and the surf zone, an area where systematic
large-scale PV gradients are comparatively weak. The
name surf zone implies a region where PV wave break-
ing occurs repeatedly.
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Having demonstrated that the conditions for PV
wave propagation exist in tropical cyclones (section
2a), the concept of wave breaking can now be dis-
cussed. McIntyre and Palmer (1985) envisaged wave
breaking as the rapid, irreversible deformation of ma-
terial contours. For adiabatic and frictionless flows, the
material contours in question are simply isopleths of
PV. Wave breaking in this context is important because
it often determines whether PV waves will make quasi-
permanent changes to the mean flow in which they are
embedded. The word rapid in the context of wave
breaking implies the time scale of the material distur-
bance should not be much longer than a typical in-
trinsic wave period in the area of interest but should
also be much shorter than dissipative time scales. The
word irreversible is used in a sense similar to that in
statistical mechanics, that is, an irreversible process is
one in which small changes in the material contours
cannot be made to retrace their path.

It should also be noted that wave breaking does not
imply that instabilities exist in the flow. Although in-
stabilities can be important in certain cases, the irre-
versible material deformations discussed above can
take place in the absence of any recognizable instabil-
ities. It is often the wave breaking process that causes
instabilities and not vice versa. Finally, it should be
remembered that the concept of wave breaking is not
an exact diagnostic tool. There are no mathematical
formulas or specific patterns that uniquely define wave
breaking. The concept is nonetheless useful when trying
to understand the complex nature of wave—mean flow
interactions.

Although tropical cyclones are considerably different
in terms of scale and forcing mechanisms from strato-
spheric planetary waves, the concept of wave breaking
is also of considerable use in examining the evolution
of spiral bands in tropical cyclones. The dynamical
similarity occurs because tropical cyclones also contain
a main vortex surrounded by a surf zone in which the
spiral bands are found. In this context, the wave break-
ing process can be thought of as modifying the mean
wind profile by ejecting high PV air downgradient into
regions of relatively low PV,

A numerical experiment will now be set up to illus-
trate PV wave breaking in our shallow-water model.
For this experiment we have chosen a square domain
1600 km on each side with a spectral truncation limit
of M = N = 84 and with 256 X 256 points on the
transform grid. The mean fluid depth is H = 300 m,
giving a gravity wave speed of c = (gH)'/?> = 542ms™'.
The Coriolis parameter is chosen to be 5.0 X 10> s 71,
corresponding to approximately 20°N which yields a
Rossby length ¢/ fof 1084 km. With these choices the
centers of adjacent vortices, which implicitly surround
the vortex in question because of the periodic boundary
conditions, are approximately 1.5 Rossby lengths away.
To avoid resolution problems, we shall specify initial
disturbances that are somewhat larger than would be
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expected in real tropical cyclones. This does not alter
the fundamental dynamics.

The initial condition consists of vorticity isopleths
that are concentric ellipses sharing the same orientation
and aspect ratio. This particular pattern, taken from
Melander et al. (1987a), was chosen to represent es-
sentially wavenumber 2 asymmetries. The initial mass
field was determined from the initial flow field using
the nonlinear balance equation gV2h = f(dv/dx — du/
dy) + 28(u, v)/d(x, y). Figure 3a shows the initial
fields for this experiment. A maximum value of 5.0
X 1074, or 10, was chosen for the relative vorticity.
Note that only the inner 800 km X 800 km area is
shown. Figures 3b-d show the time evolution of the
fields at 6-hour intervals. By 6 h, wave breaking has
begun. The wave breaking process can be crudely un-
derstood by noting that the flow remains quasi-bal-
anced and that inversion of the PV field to obtain the
wind field is a smoothing operation. The winds are
therefore more axisymmetric than the corresponding
PV field. Then cross-contour flow distorts the PV con-
tours, resulting in wave breaking. More detailed inter-
pretations of the wave breaking and axisymmetrization
process in terms of a corotating streamfunction are
given in Melander et al. (1987a) and Polvani et al.
(1989). During wave breaking, mass is actually re-
moved from the high PV region, and the PV gradient
begins to steepen. This is especially evident in the lower
right quadrant of the domain. By 12 h the region of
steep PV gradient nearly encircles the main vortex. This
process continues until 24 h, at which time the gra-
dients have become too steep for the model to resolve
and the Gibbs phenomenon begins to occur. Filaments
such as those shown in Fig. 3d might be expected to
roll up into smaller eddies. The effects of strain and
adverse shear tend to prevent such rollup, however, as
pointed out in the recent work of Dritschel (1989),
Dritschel et al. (1991), and Waugh and Dritschel
(1991).

There is a certain dynamical analogy between the
PV wave breaking processes occurring in tropical cy-
clones and those occurring in the wintertime strato-
sphere, even though the horizontal length scales and
wave excitation mechanisms are quite different. In the
wintertime stratosphere, there exists a polar vortex with
a large PV gradient at its edge. Quasistationary Rossby
waves, excited in the troposphere, can propagate up-
ward along the edge of this polar vortex and lead to
wave breaking in the stratosphere. Similarly, a tropical
cyclone vortex is a region of high PV with a large PV
gradient at its edge. A variety of processes can conspire
to make the high PV region less axisymmetric, that is,
to excite PV waves on the vortex edge. In the natural
tendency of the vortex to return to axisymmetry, the
banded features characteristic of breaking Rossby
waves are produced in the surf zone surrounding the
vortex. Among the processes that can lead to asym-
metry in the PV distribution, one might expect asym-
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metry in the moist convection to be of importance
since the high PV in the vortex center has been induced
by moist convection. Another means of producing in-
ner vortex asymmetries in real tropical cyclones, sug-
gested to us by K. Emanuel (personal communication ),
is as follows. Even with weak background vertical shear,
the upper-level anticyclone, which is not remotely axi-
symmetric, is displaced away from the surface cyclone.
The subsequent interaction of these upper- and lower-
level PV anomalies will produce asymmetric structure
in the lower vortex. If these asymmetry-producing pro-
cesses (whatever their cause ) and the PV wave breaking
process are fairly continuous in time, we might expect
the surf zone to become (as Melander et al. 1988 term
it) a tangle of nearly concentric PV filaments.

¢. Lagrangian trajectory analysis and wave activity
diagnostics

The normal-mode shallow-water model used in the
above experiment has incorporated into its code the
option of also predicting the movement of two passive
scalars o; (x, y, t) (i = 1, 2), that is, of solving Da; /
Dt = 0 along with the three equations of the shallow-
water model. These passive tracers are useful for study-
ing Lagrangian trajectories in the banding process. This
can be accomplished by initializing the two tracer fields
by a;(x, y, 0) = sin(2ax/L,) and ay(x, y, 0)
= sin(2wy/L,) so that the isolines of «;(x, y, 0) are
parallel to the y axis and the isolines of a»(x, y, 0) are
parallel to the x axis, as shown in Fig. 4 for the inner
800 km X 800 km of the computational domain. A
Lagrangian particle trajectory can then be obtained by
following the movement of a particular pair of inter-
secting «; and a, isolines. Similarly, a finite size parcel
of fluid can be traced by following the region that re-
mains bounded by the same two «; contours and the
same two a;, contours. The movements of four parcels
that began approximately 250 km from the vortex cen-
ter are followed for 6 hours in Fig. 4. The two parcels
starting on the major axis have higher PV and are
folded inside the two parcels with smaller PV. In this
way the PV distribution becomes more symmetric.

For those readers familiar with the wave activity
concepts arising in wave-mean flow interaction theory,
maps of wave activity and its flux (Fig. 5) have been
produced for the wave breaking experiment shown in
Fig. 3. A derivation of the wave activity relation and
a discussion of Fig. 5 can be found in appendix B.

If the wave breaking experiment shown in Fig. 3 is
repeated with more and more circular initial vorticity
distributions, the onset of wave breaking is delayed.
Using a single-contour version of the contour dynam-
ics/contour surgery approach, Polvani and Plumb
(1992) have demonstrated how, even in the absence
of wave breaking, tracer distributions outside the vortex
are disrupted. Thus, some banding of passive scalars
is possible, even in the absence of wave breaking, if the
inner PV region is somewhat asymmetrical.
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FiG. 3. Dynamic fields for experiment 1 at (a) initial time, (b) 6 h, (¢) 12 h, (d) 18 h. Upper
left panel of each set shows the fluid depth with a contour interval of 20 m, upper right panel the
horizontal winds, lower left panel the potential vorticity, and lower right panel the absolute vorticity.
Potc‘:‘ntial vorticity and absolute vorticity are in units of 107%
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FIG. 4. Lagrangian parcel trajectories for experiment 1. Four marked parcels are initially (upper left)
equal distances from the vortex center. Subsequent positions at 2 h (upper right), 4 h (lower left), and 6 h
(lower right) illustrate how the two parcels originating on the major axis of the elliptical PV pattern are
folded inside the two parcels originating on the minor axis.

d. Are bands gravity waves?

As noted in appendix A, the normal-mode spectral
method provides a natural partitioning of the total so-
Iution into rotational and gravitational parts. This is
accomplished by simply dividing the total sum on the
right-hand side of (A.5) into two partial sums, one
over the rotational modes (g = 0) and one over the
gravitational modes (¢ = 1, 2). The top panels of Figs.
6 and 7 show the total geopotential, wind, and vorticity
at 12 h for the wave breaking experiment. The lower
panels show the partition of these total fields into ro-
tational and gravitational parts. As can be seen in Fig.
6, the wind field is composed almost entirely of rota-
tional modes, while the geopotential field is composed
of both rotational and gravitational modes, with the
gravitational modes contributing that part of the geo-
potential that takes us from geostrophic to gradient
balance. Consistent with Fig. 6, we note that the banded

features in Fig. 7 are not due to gravity modes but are
composed almost entirely of rotational modes.

The natural partitioning provided by the normal-
mode model leads directly to Leith’s (1980) schematic
manifold diagram (Fig. 8), in which the axes R and G
denote the rotational and gravitational linear mani-
folds, with R consisting of all linear combinations of
eigenfunctions associated with the low-frequency ro-
tational modes and G consisting of all linear combi-
nations of eigenfunctions associated with the high-fre-
quency gravitational modes. Since the eigenfunctions
are individually orthogonal, R and G are orthogonal.
In addition, since the eigenfunctions form a complete
set, any model state can be represented schematically
by a point in the manifold diagram."

For flow fields in which the transient adjustment
processes have had time to establish a quasi-balanced
state, the time evolution tends to be along a slow man-
ifold, one definition of which is obtained by dividing
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FI1G. 5. Wave activity and its flux at 4-hour intervals for experiment 1. Times are 0 h (upper left), 4 h
(upper right), 8 h (lower left), and 12 h (lower right). Centers of wave activity starting on the minor axis
change only slightly while centers starting on the major axis are rapidly elongated into bands.

the predictive equations [see appendix A, Eq. (A.7)]
for the normal-mode spectral coefficients W,,,,(¢) into
the slow-mode class (¢ = 0) and the fast-mode class
(g = 1, 2) and then treating the fast-mode class diag-
nostically, that is,

dWmnO
———— = Npmo + Fruno, 2.8
7 0 0 (2.82)
ianqunq = Nmnq + anq (g=1, 2). (28b)

Here N, and F,,,, respectively, represent the pro-
Jjections of the nonlinear and forcing terms onto the
normal mode having the integer » as its x wavenum-
ber, the integer » as its y wavenumber, and v,,,, as its
frequency. In simulating slow manifold evolution, the
normal-mode equations for slow (rotational) modes
are treated prognostically by (2.8a) while the normal-
mode equations for fast (gravitational) modes are
treated diagnostically by (2.8b). From (2.8) we can
envision two slow manifolds. If diabatic and frictional
effects are neglected so that F,,,,, (¢ = 0, 1, 2) vanishes,
(2.8) defines the adiabatic, frictionless slow manifold
given by the lower curve in Fig. 8. If diabatic and fric-
tional effects are included, the divergence patterns

should be stronger and the projection of the total so-
lution onto G should be larger. This diabatic, frictional
slow manifold is given by the upper curve in Fig. 8.
The model results shown in this paper are for the shal-
low-water primitive equations but they correspond
closely to evolution along the adiabatic frictionless slow
manifold.

From Fig. 8 one can think of the gravitational-mode
contribution to the total solution as consisting of three
parts. The first part takes us from the R axis to the
adiabatic, frictionless slow manifold, that is, from a
geostrophically balanced flow to a higher-order (gra-
dient type) balanced flow. The second part takes us
from the adiabatic, frictionless slow manifold to the
diabatic, frictional slow manifold, that is, to flow pat-
terns with significant convergence and associated moist
physical processes. The third part is the transient part
of the gravitational-mode contribution, that is, that part
that is not in balance with nonlinear advection and
diabatic and frictional effects. This transient part tends
to be quite small if the diabatic processes evolve slowly
in time. As discussed by Schubert and DeMaria (1985),
it is only the third part that is missing in balanced
models such as the Eliassen balanced vortex model.
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FiG. 6. Rotational (lower left) and gravitational (lower right) mode contributions to the total (upper)
wind and mass fields at 12 h for experiment 1. Contour intervals are the same as in Fig. 3.

This discussion can be summarized by noting that
Figs. 6 and 7 show that bands forming during model
evolution along the adiabatic frictionless slow manifold
have little contribution from gravitational modes. This
suggests the possibility that real tropical cyclone spiral
bands may be primarily rotational, slow manifold phe-
nomena. The bands in real tropical cyclones however,
do not evolve along the adiabatic, frictionless slow
manifold, so that our model underestimates the real
gravitational-mode contributions. Further under-
standing of tropical cyclone bands could no doubt be
obtained with more general models that include vertical
structure and moist physical processes, such as the
model recently developed by Shapiro (1992).

3. Band formation through vortex merger and -
diabatic sources away from the cyclone center

a. Vortex merger

In the previous section, the formation and evolution
of inner bands through wave breaking processes has

been considered. We now demonstrate how spiral
bands can also be formed when a preexisting cyclonic
vortex merges with a region of enhanced PV. Vortex
merger is not a new concept. Although it has been ex-
amined in numerous fluid dynamical studies (e.g.,
Fornberg 1977; McWilliams 1984; Griffiths and Hop-
finger 1987; Melander et al. 1987a,b, 1988), its appli-
cation to tropical cyclones has only recently begun with
the observational work of Holland and Lander (1993)
and Lander and Holland (1993), the contour dynamics
study .of Ritchie and Holland (1993), and the baro-
tropic model study of Holland and Dietachmayer
(1993).

When a cyclonic vortex moves sufficiently close to
another cyclonic vortex of equal intensity, the two vor-
tices may merge or coalesce to form a larger vortex.
Extending from the newly formed vortex will be spiral
arms of relatively high vorticity. This process has been
elegantly illustrated in laboratory experiments by Grif-
fiths and Hopfinger (1987). If the vortices are not suf-
ficiently close to one another, they may simply rotate
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F1G. 7. Rotational (lower left) and gravitational (lower right) mode contributions to the total
(upper) vorticity at 12 h for experiment 1. Contour intervals are the same as in Fig. 3.

around one another without merging (Fujiwhara
1923), or they may move apart. Of greater importance
to hurricane spiral bands is the merger of vortices hav-
ing different intensities. In this section, three vortex
merger experiments will be considered, all of which

G

Diabatic
Frictional

Diabatic

Frictional A diabatic
Frictionless .

R

FIG. 8. Leith’s (1980) schematic slow manifold diagram: R denotes
the rotational linear manifold and G the gravitational linear manifold.
Adiabatic, frictionless, quasibalanced flow evolution (such as that
found in our shallow-water model integrations) tends to be along the
lower slow manifold. Diabatic, frictional, quasi-balanced flow evo-
lution (such as that found in real tropical cyclones) tends to be along
the upper slow manifold.

"Adiabatic
Frictionless

produce spiral bands in the PV field. The first two (ex-
periments 2 and 3) retain 108 waves and use a trans-
form grid with (256)? points. Although quadratically
nonlinear terms are not alias free, results indicate that
for relatively short model integrations ( ~1 day), the
increased resolution outweighs any problems associated
with aliasing error.

Experiment 2, which is shown in Fig. 9, involves the
interaction of an intense vortex with a weaker vortex
of similar size. The left vortex was initialized with a
maximum vorticity three times that of the right vortex.
As the vortices evolve, the differential rotation asso-
ciated with the more intense circulation rapidly acts
to deform the weaker vortex, whereas the circulation
associated with the weaker vortex has only a slight im-
pact on the more intense vortex. By 24 h, the weaker
vortex has been stretched and advected around the
stronger vortex, yielding a single spiral band of PV.

In experiment 3, a strong, small vortex that en-
counters a larger, weaker vortex is considered. This
case is analogous to a hurricane that forms near a large,
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FIG. 9. Experiment 2: merger of two équally sized vortices of different intensities. The four panels display
the PV field at 0, 8, 16, and 24 h. The left vortex was initialized with a maximum vorticity three times that

of the right vortex. Units are 107° 5™,

amorphous monsoon trough. Figure 10 shows the evo-
lution of the PV field for this simulation. The initial
vorticity of the small vortex has a maximum value that
is three times that of the larger vortex. As the flow
evolves, the wind field associated with the small intense
vortex stretches the PV field of the large vortex. By 24
h, much of the PV initially associated with the large
vortex surrounds the smaller vortex. The remainder of
the larger vortex appears as a wide band with a sharp
bend approximately 500 km south of the vortex center.
Similar sharp bends in the convective bands of real
tropical cyclones have been noted by Lewis and Haw-
kins (1982). The final result of this merger is a region
of PV with approximately four times the area of the
original small intense vortex. This may help explain
the large variation in the size of tropical cyclones
(Merrill 1984). An argument recently advanced by G.
Holland (personal communication ) goes as follows. If
a tropical cyclone forms near the monsoon trough, it

could be provided with a relatively large pool of PV
from which to grow. If a tropical cyclone forms away
from such a PV source, it would be expected to remain
smaller in size. This argument will be further examined
in the next simulation.

For experiment 4, the effect of placing a vortex near
a strip of enhanced PV is considered. This experiment
is performed using ( 128 )? points on the transform grid
and retaining 42 waves. It is intended to simulate the
effect of tropical cyclone formation near the edge of a
zonally elongated monsoon trough. Figure 11 shows
the PV field for this simulation at 0, 16, 32, and 48 h.
The cyclonic circulation associated with the vortex acts
to advect relatively high PV air from the strip north-
ward on the east side of the vortex and advect relatively
low PV air southward on the west side of the vortex.
The vortex becomes larger by drawing upon the PV of
the strip. By 48 h PV from the strip completely sur-
rounds the original vortex and a large spiral band ex-
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FIG. 10. Experiment 3: merger of a large weak vortex with a small strong vortex. The four panels display
the PV field at 0, 8, 16, and 24 h. The initial vorticity field of the small vortex has a maximum value three

times that of the larger vortex. Units are 107° s},

tends from the vortex. This result again supports Hol-
land’s argument for the development of large tropical
cyclones.

b. Diabatic sources away from the cyclone center

In the previous three simulations, we considered the
formation of bands from initial states that had two
preexisting vortices or regions of PV. In Experiment
5, a single axisymmetric vortex that encounters an area
of intense convection is considered (a mass sink in the
shallow-water model). The goal is to more closely sim-
ulate the actual banding process by convective asym-
metries in nature. Because a mass sink is added to the
model, the mean depth of the fluid (H) is increased to
2000 m, which allows the model to evolve without en-
countering any problems associated with massless lay-
ers. By increasing the basic-state depth of the fluid,
however, we also increase the pure gravity wave speed
and therefore the Rossby radius. Model results indicate

that these changes have no adverse effects on the sim-
ulations.

Our simulation consists of an axisymmetric vortex
located north of a large convection area. This area of
convection is an ellipse whose center is initially located
400 km south of the vortex center. The elliptical region
has a maximum semimajor axis length of 300 km. The
heating function is therefore similar in shape (but not
size) to the initial vorticity pattern for experiment 1.
The maximum value of the mass sink roughly corre-
sponds to a maximum heating rate of ~40-50 K /day.
To prevent the excitation of transient gravity waves
and ensure evolution along the diabatic slow manifold,
the mass sink is turned on slowly over a period of ap-
proximately 12 h, after which it is held fixed. The model
is integrated using ( 128 ) points on the transform grid
while keeping 42 waves. Results from this simulation
are shown in Fig. 12. Initially the vortex was centered
in x and located near the top of the figure. The mass
sink is also centered in x and is fixed near the bottom



3394

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 20

FIG. 11. Experiment 4: interaction of a vortex with a strip of vorticity, such as the ITCZ. The four panels
display the PV field at 0, 16, 32, and 48 h. The initial vorticity in the vortex is 6.4 times the vorticity in the
strip. Units are 107357,

of the figure. By 24 h the presence of the mass sink has
been felt on the entire eastern edge of the vortex. In
addition, the vortex has shifted towards the lower pres-
sure created by the mass sink, moving almost 200 km.
The weak cyclonic circulation created by the sink has
also caused the vortex to move slightly westward. By
48 h the PV field from the vortex and that due to the
mass sink have merged. The result is a large tail of PV
extending in a spiral fashion from the southern edge
of the vortex. The height field associated with the vortex
shows slight asymmetries associated with the spiral
band, suggesting the model is evolving near the diabatic
slow manifold. The band is also found to correspond
to the location of secondary tangential wind maxima.
Figure 13 shows the tangential wind speed for four
radial arms that emanate from the vortex center. The
upper left panel (a radial toward the west of the vortex
center) shows clearly that the band is associated with
an increase in the tangential wind. These secondary
wind maxima [also discussed by Richie and Holland

(1993) and Holland and Dietachmayer (1993)] are
often found in nature (Willoughby et al. 1982). They
were interpreted by Shapiro and Willoughby (1982)
as being the balanced model response to an axisym-
metric ring of convection (i.e., a concentric eyewall).
From the results shown in Figs. 3, 9, 10, 12, and 13
we conclude that such secondary wind maxima can
also be produced by wave breaking, merger, and by
asymmetric convection whose associated PV anomaly
has been elongated and wrapped around the main
vortex.

Another interesting feature in the 48-h fields is the
formation of what might be considered secondary
bands (Willoughby et al. 1984). These bands are es-
pecially visible on the northern edge of the vortex and
appear to be due the asymmetric mass sink that is now
positioned much closer the center of vortex. Beyond
48 h, the vortex begins to rapidly intensify as its position
moves nearer to the mass sink. Gradients then become
too steep for the model resolution.
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F1G. 12. Experiment 5: asymmetrically heated vortex. The wind and mass fields for the asymmetrically heated vortex
at (a) 24 h and (b) 48 h. The height field (upper left) has a contour interval of 2 dm. The maximum wind vector,
defined as the distance between two consecutive tick marks, is 50 m s™'. The PV (lower left) and absolute vorticity
(lower right) are in units of 107 s~! and have contour intervals of 2.0 X 10~*. Only the inner 800 X 800 km of the

©!

01

N
///._.\\\\\\\
///...\-\\\\\\
l,l‘.|‘\\\|\
P A |
N
LIl
N I
NN N~ st
R
J T
| IS U RS TR N R
| LA (LA B B (N B
o
‘o
K
YT R WU S MR S BN
| L DAL S
P N RN
P . T T N
PR T R
PR S N N U
,///.,-\\\\\\-
<NV L
I -
'1/1/1"‘““
‘\\\\///ffl
\\\\\////!I
\\\\__///‘///
NN~~~ 7
[ A A A
N = o e PV R
1 |
T L

1600 X 1600 km domain is shown, with tick marks every 50 km.



3396

180°

270°

S

N R I
90°

T T T T

[4¥] 5]
(@] (@]

Speed (mvs)
o

T T

PFETIrE B

Y NN SR RS NS

0
0 100 200 300 400 500

co el e

Radius (km)

F1G. 13. Tangential winds as a function of radius for experiment
5 at 48 h. The labels on the lower left panel also apply to the other
three panels. The upper left panel is along a radial toward the west
of the vortex, the upper right panel toward the south, and the lower
left panel toward the east; all three cross the band and show secondary
wind maxima. The radial toward the north (lower right panel) does
not cross the band and does show a secondary wind maximum.

These results seem to indicate that banding processes
can be explained rather well using PV arguments. Re-
lated experiments (not shown) indicate that other
forms of asymmetric heating can also produce con-
centric eyewalls similar to those observed occasionally
in small, intense tropical cyclones. During a model
simulation in which the heating was turned off slowly,
thus simulating a vortex that comes in contact with an
area of intense convection but slowly propagates away,
the asymmetries in the PV field simply wrapped around
the existing vortex, creating an annular region of PV,
The fact that concentric eyewalls are only observed in
more intense hurricanes supports this idea. When
coming in contact with an area of intense convection,
more intense hurricanes would allow the PV anomalies
to simply wrap around the vortex before interacting
with it. Observational studies would need to be done,
however, to support this hypothesis.

4. Band formation through breakdown of the ITCZ

a. Review of the linear stability analysis for a zonal
strip of high vorticity

When a zonally elongated line of ITCZ convection
forms off the equator, a zonally symmetric flow tends
to develop. For the case of an ITCZ near 10°N (such
as that shown in Fig. 1) low-level easterlies are pro-
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" duced north of the ITCZ while low-level westerlies are

produced between the equator and the ITCZ. At upper
levels, the zonal flow is just the opposite. The low-level
cyclonic shear zone between the easterlies and west-
erlies (the monsoon trough) can also be envisaged as
a zonal strip of uniformly high PV, with large poleward
gradients of PV on its edges. On the south edge of the
strip the PV increases to the north, while on the north
edge the PV decreases to the north. In terms of PV
(Rossby) wave theory, a PV wave on the south edge
of the strip will propagate westward relative to the
westerly flow there, while a PV wave on the north edge
will propagate eastward relative to the easterly flow
there. Thus, it is possible for these two counterpropa-
gating (relative to the zonal flow in their vicinity) PV
waves to have the same phase speed relative to the
earth, that is, to be phase locked. If the locked phase
is favorable, each PV wave will make the other grow,
and barotropic instability will result (Hoskins et al.
1985). This barotropic idealization is one view of the
origin of easterly waves. In reality baroclinic and dia- -
batic effects must also be important (after all, the basic-
state PV field results from diabatic effects), but here
we shall isolate the barotropic processes in order to
investigate the extent to which they explain spiral
bands.

In order to make the above discussion quantitative,
consider a zonal strip of high PV in a nondivergent
barotropic model on an infinite fplane (Rayleigh 1945,
pp. 392-394; Gill 1982, section 13.6; Dritschel 1989;
Pratt and Pedlosky 1991). Since there is no distinction
between potential vorticity and vorticity in such a
nondivergent model, we can use these terms inter-
changeably. For the basic-state shear layer defined by

—$oYo, Yosy<oo
u(y)=y—5%¥y, —NsSYysny (4.1)
$oo, —0 <Y< — Yo,

the corresponding relative vorticity equals the positive
constant {, in the central region —y; < y < 3 and
vanishes elsewhere. Now consider small amplitude
perturbations of fluid particles on this basic state. Since
the basic-state vorticity is piecewise constant, the per-
turbation vorticity will vanish everywhere except near
the edges of the PV strip, that is, V2 = 0 for y # )y,
where ¢ is the perturbation streamfunction. For si-
nusoidal meridional displacements (denoted by 7) of
the strip edges we have 5, = #,/%* ) and n,
= p,e'**=9) where k is the zonal wavenumber, ¢ the
complex frequency, 1, and 7, are complex constants,
and the subscripts n and s denote northern and south-
ern_edges. The solution is then y = {¢,e 0!
+ e Kyl gitkx=a) where ), and ¥, are complex
constants. The solution associated with the constant
¥, has PV anomalies concentrated at y = y, and the
corresponding streamfunction decays away from
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y = . Similarly, the solution associated with ¥, has
PV anomalies concentrated at y = —y, and the cor-
responding streamfunction decays away from y = —y;.
To relate ¢, to 3, and ¥, to 7, we require continuity of
the total zonal wind at the displaced edges y = yo + 1,
and y = —yp + 7,, which results in ky, = 3 {7, and
ks = — 1 §ons. Using these results in the equations (9/
ot + 1d/dx)n, = dY/dx at y = y, and (8/9t + o/
dx)ns; = &Y /dx at y = —)p, we obtain the matrix ei-
genvalue problem

1%((1 — 2kyo)

_e_Zkyo %n _ ﬁn
(1 —2kyo>)(%s)“’(m)’ (4.2)

which can be regarded as a concise mathematical de-
scription of the interaction of two counterpropagating
PV waves. If the northern wave were absent, the fre-
quency of the southern wave, determined from the
second row of (4.2), would be given by o/k = #t(—p)
— §/(2k), which represents a PV wave propagating
westward relative to the westerly flow at y = —yy,. Sim-
ilarly, if the southern wave were absent, the first row
of (4.2) would give o/k = i(yy) + $o/(2k), which
represents a PV wave propagating eastward relative to
the easterly flow at y = y,. In the general case, both
waves are present (their interaction being represented
by the off-diagonal terms in the matrix), and the ei-
genvalues of (4.2) are given by o = = 1 &[(1 — 2ky,)?
— ¢ *%n]!/2  Pyre imaginary ¢ occurs if 0 < kyp
< 0.6392. The most unstable mode occurs when kyy,
= 0.3984, which corresponds to a zonal wavelength
approximately eight times the width of the strip. For
this most unstable mode, the time behavior is
020128 50 that the e-folding time is approximately 5/
$o. For & = 6.25 X 107> s}, which is the value used
in the shallow-water experiment described below, the
e-folding time of the most unstable mode is 0.92 days.

2 e—2ky0

b. Numerical experiment with the nonlinear shallow-
water model

Now let us use the above nondivergent normal-mode
stability analysis as a guide in setting up a numerical
experiment in our shallow-water model. For this ex-
periment we have chosen a square domain 6400 km
on each side with = 2.5 X 107> s™! and H = 300 m.
As an idealized monsoon trough shear zone let us con-
sider a relative vorticity field that is uniform at 6.25
X 107° 57" in the region 3100 < y < 3300 km. In the
adjacent regions 2800 < y < 3100 km and 3300 < y
< 3600 km the relative vorticity decreases smoothly
to a slightly negative value that is maintained over the
rest of the domain. The slightly negative relative vor-
ticity outside the strip is required to make the area-
averaged relative vorticity vanish. This zonally sym-
metric vorticity field, along with its associated balanced
wind, geopotential, and potential vorticity, is shown
in Fig. 14a. The maximum easterly and westerly zonal
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flows near the north and south edges of the vorticity
strip are 11 m s™!, so the total shear across the strip is
22 ms™!'. According to the normal-mode stability
analysis for piecewise constant vorticity strips in a
nondivergent barotropic model, we should expect bar-
otropically unstable waves with a zonal wavelength ap-
proximately eight times the width of the strip, that is,
approximately a zonal wavenumber 2 pattern. To ex-
cite such an instability without causing significant
gravity wave motions in the shallow-water model, we
have added white noise to the initial rotational mode
spectral coefficients while leaving the gravitational
mode coefficients undisturbed. This noise field has been
scaled in such a way that the initial physical space wind
perturbations are typically around 0.01 m s™!. With
this weak initial perturbation, the patterns change very
slowly at first, but after 8 days a distinct wavenumber
two pattern has begun to emerge. By 10 days (Fig.
14b) the patterns are evolving more quickly, and the
PV field has taken on a varicose character, with PV
beginning to pool in regions connected by filaments.
In a sense, the pooled regions are competing with each
other to acquire all the potential vorticity in the fila-
ments. By 12 days the pools have become more axi-
symmetric and the filaments have become elongated
and started to wrap around the PV centers. The elon-
gated filaments of PV at 12 days have a similar ap-
pearance to the long thin bands of convection in Fig.
1. Thus, outer bands such as those observed in Fig. 1
may be the remnants of those parts of the ITCZ, which
have been elongated and coiled by other parts of the
ITCZ that have pooled their PV into nearly symmetric
vortices. The pooled regions of PV are not yet hurri-
canes. For them to become hurricanes requires a sub-
stantial boost in their PV through diabatic processes.
The PV dynamics of this final nonlinear phase has been
studied with an axisymmetric balanced vortex model
by Schubert and Alworth (1987).

A beautiful example of ITCZ breakdown and the
formation of a tropical cyclone has been pointed out
to us by Dr. L. Shapiro. The example can be seen in
the series of satellite pictures presented by Agee (1972).
These show the ITCZ developing a wavy character, a
tropical storm forming near a wave crest, and con-
necting cloud bands joining the ITCZ and the tropical
storm at the later stages of development. Shapiro (per-
sonal communication ) interprets the entire process as
a “redistribution of vorticity, associated with the strong
shear in the ITCZ, into an isolated vortex.” The pooling
process illustrated in Fig. 14b entirely supports this in-
terpretation.

In passing, we note that a high-resolution spectral
model is not necessary to illustrate the pooling and
filamentation processes. In fact, simple nonlinear con-
tour dynamics models with only two contours (three
piecewise constant vorticity regions) yield elegant sim-
ulations as can be seen in Dritschel (1989, Fig. 3) and
Pratt and Pedlosky (1991, Fig. 5).
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FIG. 14. Experiment 6: formation of bands due to ITCZ breakdown. Dynamic fields (fluid depth, upper left; wind
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5. Concluding remarks

Moist convective processes near the tropical cyclone
center continuously conspire to make high PV there,
with asymmetries in the distribution of moist convec-
tion resulting in asymmetries in the PV pattern. The
PV wave breaking mechanism and the merger mech-
anism then continuously operate to symmetrize the
PV field. In the symmetrization process spiral bands
of high PV develop in the surrounding fluid. The region
surrounding the high PV core can be expected to take
on the surf zone character of two-dimensional turbu-
lence.

Do observations actually reveal a surf zone in hur-
ricanes? Although observationalists have yet to produce
fine-grain maps of vorticity or potential vorticity, flight
legs routinely produce radial profiles of the tangential
wind, which is of course closely related to the vorticity.
In mature hurricanes these plots of v(r) often show
(e.g., Willoughby et al. 1982, Figs. 2 and 4) a rather
smooth character inside approximately 50 km and an
irregular or turbulent character outside this radius. This
is entirely consistent with the concept of a surf zone
outside the high PV vortex core.

In an encounter between two vortices of different
PV maxima and different areas, there is often merger
and filamentation. One vortex is usually victorious in
the sense that its fluid particles (and hence its PV) end
up in the central core of the combined vortex, with the
PV of the loser elongated and coiled around the victor.
A long-lived tropical cyclone can be envisaged as ex-
periencing victory after victory as it coils weaker PV
anomalies around itself. If the cyclone does not meet
its demise after landfall or recurvature over colder wa-
ter, there is one last encounter it is likely to loose—its
encounter with the tropospheric polar vortex. This oc-
curs when the tropical cyclone, which had been drifting
to the northwest, recurves into the midlatitude west-
erlies and finds itself, an intense but small PV anomaly,
up against the less intense but huge polar vortex. In
this encounter, the tropical cyclone often gets sheared
out into a PV streak and becomes incorporated into
the polar vortex. The above process, in which the high
PV induced by convection in tropical regions ends up
in an elongated form in the polar vortex, can be clearly
seen in time lapse geostationary satellite film loops.

Tropical cyclones occur in a wide variety of sizes. A
large cyclone and a small cyclone might have nearly
the same maximum tangential wind speed near the
radius of eyewall convection, but in the small cyclone
the wind decreases rapidly with radius while in the large
cyclone the wind decreases slowly with radius. The area
of gale force winds (i.e., winds greater than 17 m s™')
can differ by over a factor of 100 between large and
small cyclones. Since the tangential wind structures
can be so different in large and small cyclones, the
vorticity and potential vorticity structures can also be
quite different, with large cyclones having vorticity and
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potential vorticity spread over a larger horizontal area.
Two possible explanations for these different potential
vorticity distributions are as follows. First, the moist
convection (which results in high potential vorticity in
the lower troposphere ) might be distributed differently
in large and small cyclones, with a confined, intensely
raining area in small cyclones and a broad area of rain-
fall in large cyclones. A second possibility is that small
intense tropical cyclones have developed in a nearly
symmetric fashion with minimal vortex merging, while
large tropical cyclones have experienced significant
merging and growth in the area of high PV. In the
latter case, the PV is spread over a much larger area
so that significant tangential winds extend out to large
radii.

A question sometimes asked (Ryan et al. 1992) is
whether rainbands help or hinder the development of
the cyclone-scale circulation. The use of terms such as
“feeder bands” seems to imply that the bands are help-
ing development by feeding moisture to the mesoscale
power plant at the eyewall. The present integrations
suggest that PV, in addition to moisture, can be fed
into the vortex. Both these effects would appear to help

- development. In contrast, according to the efficiency

analysis of Hack and Schubert (1986), the most rapidly
developing cyclones should be those that manage to
get nearly all of their latent heat release as close to the
eyewall as possible. Since bands tend to cause latent
heat release away from the eyewall, they may, in this
sense, be regarded as hindering development.

In closing, we would like to note that researchers on
middle atmosphere dynamics have significantly ad-
vanced their subject by producing global, isentropic
maps of PV, both from observations and model output.
In a similar way, the construction of observationally
based and model-based, fine-grain PV maps for tropical
cyclones and the ITCZ could significantly advance our
understanding of tropical dynamics.
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APPENDIX A
Normal-Mode Model

To derive the normal-mode model, let us first write
(1.1)-(1.3) in the vector form
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G_W + LW=N+F,
ot

where W = [u, v, ®/c]" with ® = g(h — H) the de-
viation geopotential; N = [{v — dK/dx, —{u — 9K/
dy, —d(u®/c)/dx — d(v®/c)/dy]" represents the
nonlinear terms with K = 1 (u? + v?) the kinetic energy
and { = dv/dx — du/dy the relative vorticity; F = [ F,
G, gS/c]" represents the forcing terms; and the linear
operator .L is defined by

cad/dx

cd/dy ] .

0 -f
L= f 0
cd/dx cd/ay 0

Now define the inner product of any complex three
component vectors f and g by

1 Ly L,
L.L fo fo (figh + /o83 + &%) dxdy,
x=y
(A2)

where * denotes the complex conjugate. The operator
L is skew-Hermitian with respect to the inner product
(A.2), which guarantees that the eigenvalues of .L are
pure imaginary and the eigenfunctions are orthogonal
(as long as degeneracy does not occur). The eigenvalues
will be denoted by iv,.,, and the eigenfunctions by
Konng(x, ¥), so that K,,, satisfies LKy = iVmngKng,
where (mng) are integers that, respectively, index the
wavenumber in x, the wavenumber in y, and the three
different eigenvalues and eigenfunctions for a given
(mn). The eigenvalues are given by

(A.1)

(f,g)=

0, g=0 (rotational modes)
” ==
e (—1)%,m, g=1,2 (gravitational modes),
and the corresponding eigenfunctions by

Kong(x, p) = e/mtin)
r 3

1 _iCln
— | ick,, g=0
Ymn
X < f P (A3)
1 (anqkm + lfln)
T anqln_ifkm g=1,2 .
| V2btmntin Chimn )

where v, = (f2 + czsu'%nn)”z, MBmn = (kgn + l%)UZ, Km
= 2wm/L,, and [, = 27n/L,.

It can be easily shown that the eigenfunctions given
by (A.3) are orthonormal, that is,

1, if(m,n,q)=(m'nq)
(Kmnq: Km’n’q’) = .
0, otherwise.

(A4)
Because the eigenfunctions K,,.,,(x, ¥) form a complete

set, our original dependent variables W( x, y, t) can
be expressed as the series
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WX, ¥, 1) = 2 Wong()Komg(X, ),

mng

(AS)

where W,,,,,(¢) is the complex scalar spectral coefficient.
Taking the inner product of (A.5) with K, , and
using the orthonormality relation (A.4),

Wmnq(t) = (W(x, y’ t), Kmnq(xa y)) (A'6)

-1s obtained. The relations (A.5) and (A.6) can be re-

garded as a normal-mode transform pair, with (A.6)
giving the transformation from physical space to nor-
mal-mode spectral space and (A.5) giving the trans-
formation from normal-mode spectral space to physical
space. /

To transform our original shallow-water equations,
we take the inner product of (A.1) with K,,,,,(x, y) to
obtain

d
a (W> Kmnq) + (-‘CW’ Kmnq)

= (N, Kmnq) + (F> Kmnq)-

Using (A.6) and the fact that (LW, K,,;ny) = —(W,
LK) = Wng(W, K,ng), We obtain

E‘% + ianqu;lq = Nmnq + anqy
where Ny, = (N, K,ung) and Fo,y = (F, Kpg). We
have now transformed our original governing system
(A.1) into the spectral equations (A.7).

The solutions presented in this paper were obtained
by numerically solving ( A.7) with the nonlinear terms
calculated using an alias-free transform method, that
is, by transforming to physical space each time step via
(A.5), calculating the nonlinear terms in physical
space, and then transforming to N,,,, so that (A.7) can
be stepped forward in time.

It is important to note that the method yields a nat-

(A7)

‘ural partitioning of the solution into rotational and

gravitational parts. To obtain the contribution due to
rotational modes we sum (A.5) over all m and n but
only over g = 0. Similarly, to obtain the contribution
due to gravitational modes, (A.5) is summed over all
mand nbut only overg =1 and g = 2.

APPENDIX B
Wave Activity Diagnostics

It is often convenient to decompose an atmospheric
flow into a basic state and a disturbance to that basic
state. After making this decomposition of the flow, it
is possible to derive wave activity conservation laws.
Wave activity is a conserved disturbance quantity that
is of quadratic or higher order in the small amplitude
limit. In this Appendix, we follow the approach of
Haynes (1988) in deriving a finite-amplitude wave ac-
tivity conservation relation for the adiabatic, frictionless
version of the shallow-water equations.
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For convenience we now use cylindrical coordinates
and denote the radial component of velocity by # and
the tangential component by v. Thus, our decompo-
sition of the total flow is u = uy + u., v = vy + v, A
= hy + h,, where the subscript ¢ denotes basic state
and the subscript . denotes disturbance or eddy. No
linearization is used so the variables with subscript .
can be of any magnitude. The basic state chosen here
is one with zero radial component (i.e., 4y = 0), a
tangential component vy(r) obtained by taking the
tangential average of the initial condition, and a depth
ho(r) that is in gradient balance with vo(r). This basic
state is a steady, symmetric solution of the original
equations.

To derive the wave activity relation we begin with
the governing equations in the form

d(hu) + d(rhuu) + d(hvu)

ot ror roo
- (f+ E)hv +an o0, 1)
r ar
8[h(rv + /)] + alrhu(rv + 3fr*)]
at ror
A hv(rv + L fr*)] oh _

+ 796 + gh Py 0, (B.2)

_6_@ a(rhu)  o(hv) _
ot + ror rdgp 0, (B.3)

where 4 is the fluid depth. Equations (B.1)-(B.3) are
regarded as a closed system in u, v, and /#. A conse-
quence of (B.1)-(B.3) is the conservation of the po-
tential vorticity P. Since P is conserved, any function
C(P) is also conserved. Thus, the Casimir function
C(P) satisfies
o(hC) d(ruhC) 3(vhC)
+ + =
ot ror rog

Adding (B.2) and (B.4), we obtain

Ah(rv + 3 + O)] + dlruh(rv + 3P + €)1
at ror
4 d[vh(rv + 3fr* + C) + righ’l _
rdo
Following Haynes (1988), C(P) is chosen such that
the disturbance part of A(rv + 1fr> + C) can be written
as a divergence, plus a term that is explicitly second

order in wave amplitude. The disturbance part of 2(rv
+ 1fr? + C) is defined as

[h[rv + %frz + C(P)H = h[rv + %frz + C(P)]

0. (B.4)

0. (B.S)

- ho[rvo +~;—ﬁ'2 + C(Po)] .
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After some manipulation, this can be written

[h[rv + %frz + C(P)”

= rvehe + h[C(P) — C(Po) — PC'(Po)]

+ A C'(Po)rve]  9[C'(Fo)ue)
rog

ror
1
+ he[rvo + Efr2 + C(Py) — POC’(PO)]

aC'(Pp)
ror

+rve[h0— ] (B'6),

The first line on the right-hand side of (B.6) is second
order in the disturbance amplitude and will turn out
to be the wave activity. The second line is the diver-
gence of a flux. Now choose C(P) in such a way that
the last two lines in (B.6) vanish. The choice

Pmax ~ ~
c(pP)= —L m(P)dP, (B.7)

where

m(Po(r)) = J; ho(F)FdF, (B.8)

makes the last term in the square brackets in (B.6)
vanish, as can easily be verified. Since

1
FUo + —ﬁ'2 + C(P()) - P()C'(Po)
ror 2

aC'(Po)
ror

and since the right-hand side of (B.9) vanishes by the
previous argument, we conclude that rv, + 1fi?
+ C(Py) — PoC'(Py) = const. The constant is zero be-
cause the left-hand side vanishes at » = Q. Thus, the
last two lines in (B.6) vanish, and we write (B.6) as

= Po[ho— :|, (B9)

[h[rv + %fr2 + C(P)”
_ dlm(Po)rve] [ m(Po)u.]
=4+ ror rog » (B.10)
where
A = rvh, + h[C(P) — C(Py) — P.m(Py)] (B.11)

is the wave activity.

Noting that the basic state is a steady solution of the
governing equations and then substituting (B.10) into
(B.5), we obtain
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04 a(rv,)
ot ror

4 1
-—+——[hru(rv+§fr2+C)+m(P0)a—t

a4 1,
+r3¢ [hv(rv+2fr +C)

1 du
+ —grh®> —m(P)—|=0. (B.12
zg’ m(Po) at] ( )
Using the disturbance momentum equations
ou,
— hPv + ho P
o hPv h() oo
1 1 1 -
a(ghe+5u§+§v2—§vé)
+ = :
o 0, (B.13)
1 2 1 2
AN gh+—-u®+ v, + = v3
BTV |y~ L
ot e ’
(B.14)

in (B.12), we obtain

04  d[r(ud + horu.v,)]
—+
ot ror

1
a[vA +hor3 (v = ud) + 13 g

t rdg =0

(B.15a)

with the wave activity (B.11) rewritten as
P
A= rvh, + hf [m(P) — m(Py)ldP, (B.15b)
Py
where

m(Py(r)) = J: ho(F)FdF. (B.15¢)

The relations ( B.15) allow us to diagnostically analyze
the shallow-water model results in terms of wave ac-
tivity and its flux. To accomplish this, partition the
solution at any particular time into basic state and dis-
turbance parts, and then use (B.15b,c) to compute 4
and (B.15a) to compute the flux of 4.

For the wave breaking experiment shown in Fig. 3,
the wave activity and its flux at 4-h intervals are shown
in Fig. 5. Initially there are four centers of wave activ-
ity—two on the major axis and two on the minor axis
of the ellipse. The initial wave activity centered on the
minor axis is elongated along the flow vectors and ro-
tates with relatively little change in shape during 12 h.
In contrast, the wave activity centered on the major
axis is influenced by the differential rotation of the flux
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vectors, the result of which is an outward movement
and spiral banding of this wave activity.
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