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ABSTRACT
Chebyshev spectral methods were studie& in Part I for the linear advection equation in one dimension. Here

"we extend these methods to the nonlinear shallow water equations in two dimensions, Numerical models are

constructed for a limited domain on a g-plane, using open (characteristic) boundary conditions based on Riemann
invariants to simulate an unbounded domain. Reflecting boundary conditions (wall and balance) are also con-
sidered for comparison. We discuss the formulation of the Chebyshev-tau and Chebyshev—collocation discre-
tizations for this problem. The tau discretization avoids aliasing error in evaluating quadratic nonlinear terms,
while the collocation method is simpler to program.

Numerical results from a linearized one-dimensional test problem demonstrate that with the characteristic
boundary conditions the stability properties for various explicit time differencing schemes are essentially the
same as obtained in Part I for the linear advection equation. These open boundary conditions also give much
more accurate results than the reflecting boundary conditions. In two dimensions, numerical results from the
nonlinear models indicate that the Chebyshev-tau discretization should be based on the rotational form of the
equations for efficiency, while the Chebyshev-collocation discretization should be based on the advective form
for accuracy. Little difference is seen between the tau and collocation solutions for the test cases considered,
other than efficiency: with explicit tu'ne differencing, the collocation model requires an order of magnitude less
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computer time. °

1. Introduction

A limited-area model is an attempt to simulate or
forecast the conditions in a limited region of the at-
mosphere, while in some sense recognizing that the
real atmosphere has no lateral boundaries. Although
such models usually are discretized in space using finite
differences, the spectral approach offers the hope of
obtaining much higher accuracy and possibly much
higher efficiency. In Part I of this study (Fulton and
Schubert, 1987, referred to hereafter simply as Part I)
we demonstrated that spectral methods based on Che-
byshev polynomial expansions may be a good choice
for such limited-area models. However, in that study
we considered only the simple one-dimensional linear
advection equation, whereas most physical situations
worth modeling are much more complicated, usually
involving coupled systems of nonlinear equations with
nontrivial boundary conditions.,

The purpose of this: paper is to examine the for-
mulation and performance of Chebyshev spectral
methods for a prototype model more representative of
actual meteorological models. Our particular interest
is in limited-area models based on primitive equations;
to avoid the added complexity of vertical structure
while rptaining many of the essential features of that
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system, we study here the nonlinear shallow water
equations on a limited domain. We include no param-
eterized physics: rather, we use specified forcing and
concentrate on the ability of the Chebyshev methods
to represent the dynamics properly. In section 2 we
discuss the governing equations and present some suit-
able boundary conditions. Chebyshev-tau and Che-
byshev-collocation methods for this model are for-
mulated in section 3. In section 4 we present numerical
results from these Chebyshev models. Our conclusions
are summarized in section 5.

2. Governing Equations and Boundary Conditions

In Cartesian (x, y) coordinates the nonlinear shallow
water equations are

du, du. du 3 )
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Here u and v are the velocity components in the x and
y directions, respectively, ¢ is the deviation of the geo-
potential (free surface height /4 times the acceleration
g due to gravity) from the constant positive reference
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value ¢, fis the Coriolis parameter, and F, G and Q
represent specified forcing. This advective form of the
model is equivalent to the rotational form

u_( v s\ Of Lol p)
ot (f+6x ay)”+ax[¢+2(” +”)] FX
CCO PCCICA W PO ST
az+(f+ax ay)u+ay[¢+2(u +v)] G
3 9 - 9
o +6x[(¢+¢)u]+8y[(¢+¢)v] =Q

“ @2
Both (2.1) and (2.2) can be used as starting points for
developing numerical models. We will consider both
J-plane (constant ') and S-plane (f = f, + By with f;
and S constant) models.

The solutions of the shallow water model on an in-
finite domain can be characterized in terms of the cor-
responding normal modes, i.e., the eigenfunctions of
the spatial operator of the model. Since these modes
form a complete set, the solution of the model for par-
ticular data (i.e., initial conditions and forcing) can be
expanded in terms of them with expansion coefficients
which depend on time. In the unforced linear case, the
expansion coefficients oscillate sinusoidally in time at

the frequency given by the corresponding eigenvalue, -

and hence the solution is a superposition of waves.
This correspondence with waves allows us to classify
each normal mode as either a gravity mode (more
properly, an inertia~gravity mode) or a Rossby mode
(a geostrophic mode if f is constant). Gravity and
Rossby modes are referred to as “fast” and “slow”
modes, respectively, based on the relative sizes of the
corresponding eigenvalues.

In the forced and/or nonlinear case, the time de-
pendence of the expansion coefficients is more general.
The part of the solution composed of the slow (Rossby)
modes and those components of fast (gravity) modes
which are evolving slowly with time will be referred to
here as the balanced flow, since it is close to the solution
of a corresponding balanced model (e.g., a quasi-geo-
strophic model). In many situations of meteorological
interest, this balanced flow contains most of the energy;
the remainder of the solution, consisting of rapidly
progapating gravity waves, contains relatively little en-
ergy. Nevertheless, simplifying the equations to form
a balanced model by eliminating terms responsible for
the propagating gravity waves is often not desirable,
since this also distorts the balanced flow.

To solve the shallow water model on a limited region
of the (x, y)-plane one must specify boundary condi-
tions. These should be chosen so that the resulting
problem is mathematically well posed: the problem
should have a unique solution for any combination of
data (initial conditions and forcing), and this solution
should depend continuously on the data. Furthermore,
the boundary conditions should be physically reason-
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able. Here we are particularly interested in simulating
a portion of an infinite domain with a limited-area
model and hence seck boundary conditions which
minimize the impact of the computationally imposed
boundaries. In light of the discussion above, ideal
boundary conditions would allow the balanced flow in
the model to closely approximate that of the solution
on an infinite domain, and allow the outward-propa-
gating gravity waves to leave the model domain without
reflecting.

Open boundary conditions, i.e., those which trans-
mit at least some portion of the waves incident on the
boundary, have been studied extensively. Such con-
ditions are generally based on the Sommerfeld radiation
condition (e.g., Pearson, 1974; Orlanski, 1976; Hack
and Schubert, 1981) or the related Riemann invariants
(Wurtele et al., 1971; Elvius and Sundstr6m, 1973),
both of which are discussed in Courant and Hilbert
(1962, pp. 315, 430). For dispersive systems or prob-
lems in more than one space dimension such condi-
tions are inexact. Higher-order approximations have
been obtained (Engquist and Majda, 1977; Bayliss and
Turkel, 1980) at the cost of increased complexity. Exact
conditions have also been obtained (Bennett, 1976) but
are impractical to implement. Israeli and Orszag (1981)
have obtained good results by combining open bound-
ary conditions with absorbing boundary layers. The
question of well posedness has been investigated in de-
tail for various systems of equations and boundary
conditions by Oliger and Sundstrém (1978).

Here we shall use a simple open boundary condition
which consists of specifying the quantities (i.e., the Rie-
mann invariants) that propagate along characteristics
into the model domain and not specifying the quantities
which propagate out. We refer to this as the characteristic
boundary condition; a simple derivation appears in
Fulton (1984). For a linearized version of the shallow
water equations (2.1), one specifies ¥, — ¢'/c every-
where on the boundary and uj, wherever there is basic
state inflow. Here u, and 1, denote the velocity com-
ponents normal (positive outward) and parallel to the
boundary, respectively, primes denote deviations from
the basic state, and ¢ = ¢'/2. For the full nonlinear Egs.
(2.1) or (2.2), one can instead specify u;, — 2(¢
+ ¢)'/? everywhere on the boundary and %, on inflow;
this effectively replaces the propagation speed ¢
= ¢'2 with (¢ + ¢)'/? (Oliger and Sundstrém, 1978).

While the characteristic boundary condition yields
a well-posed problem, it will not yield a good approx-
imation unless the incoming quantities are specified
correctly for the physical situation being modeled. The
key here is the observation that each of the quantities
specified in fact has contributions from both the bal-
anced flow and the fast-propagating gravity waves; one
wants to eliminate the incoming gravity wave com-
ponent (assuming there are no sources of gravity waves
outside the computational domain) without distorting
the balanced flow. Simply setting the incoming quan-
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tities to zero (the homogeneous form of the condition)
may result in significant errors when there is balanced
flow near the boundary. In general, one should set the
incoming quantities approximately equal to what their
contributions would be from the balanced flow on an
infinite domain (the inhomogeneous form of the con-
dition); if these specified values are good enough ap-
proximations then the incoming gravity wave com-
ponents will be small.

Two other boundary conditions will also be consid-
ered in this study for comparison. The balance bound-
ary condition is based on the assumption that near the
boundaries the solution behaves like that of the cor-
responding balanced model. For a linearized, y-inde-
pendent version of the shallow water model on an f-
plane this condition takes the form

!
a—u—J—ru’=0 at x=x,
ax ¢
Q’i+j—fu’=0 at x=xp
Ix ¢

; 2.3)

where x, < x < x, is the one-dimensional model do-
main (Fulton, 1984). As before; v’ must be specified
wherever there is basic state inflow. Since no- useful
generalization of the balance condition to two dimen-
sions in Cartesian coordinates is known, we will use
this condition only in one-dimensional examples. The
wall boundary condition simply sets #; = 0 on the
boundary; this yields a well-posed problem for the
shallow water model (Oliger and Sundstrom, 1978).

The performance of the boundary conditions de-
scribed above is measured in part by their ability to
transmit gravity waves. In the linear model on an f
plane it can be shown that a gravity wave with unit
amplitude incident on the boundary produces a re-
flected wave with amplitude R satisfying

_ (v cosl — pc)* + f* sin’f

= 24
(v cosf + pc)® + f2 sin%6’ (2.4)

IRI?

where @ is the angle between the outward normal to
the boundary and the incident wavenumber vector k,
p = k|, and v = (f? + p*?)'? is the gravity wave
frequency. Figure 1 shows |R| as a function of the di-

" mensionless wavenumber pc/f and the angle of inci- .

dence 8. Lower reflectivities can be achieved (e.g.,
Engquist and Majda, 1977) at the cost of increasingly
complicated boundary conditions. In contrast, the bal-
ance and wall boundary conditions both have unit re-
flectivity and hence trap all gravity waves within the
model domain. However, the balance condition is the
superior of the two in the sense that it allows mass flow
u through the boundary and does not distort the geo-
strophic component of the flow.

With perfectly reflecting (or periodic) boundary
conditions, one can use the normal modes of the con-
tinuous model as basis functions for a spectral method
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FiG. 1. Reflection coefficient |R| for the characteristic boundary
condition as a function of the dimensionless wavenumber pc/f and
the angle of incidence ¢ in degrees.

(e.g., Schubert and DeMaria, 1985). This normal mode
approach represents the dynamics directly in the dis-
cretization, thus simplifying the problems of initializa-
tion and time differencing. However, in the general
case where such boundary conditions are physically
inappropriate this normal mode approach is not avail-
able; to obtain the high accuracy of a spectral method
one can use a basis of Chebyshev polynomials as dis-
cussed in Part L. In the next section we formulate Che-
byshev spectral models based on the shallow water
equations with the boundary conditions discussed
above.

3. Chebyshev spectral discretizations

Chebyshev spectral discretizations of the shallow
water model on the domain X, S X< Xp, Vo SYS< W
are based on the expansion’

u(x’ Vs l) uMN(x’ s t)
U(x, Vs t) ~ UMN(x9y9 t)
¢(x3 Vs t) ¢MN(x1 Y, t)
M N uAmn(t)
=2 2| dmld) | THXT(¥).  (3.1)
m=0n=0 | p(l)

Here T, is the Chebyshev polynomial of degree n, M
and N are the spectral truncations in x and y, respec-
tively, X' = 2(x — X2)/(Xp — Xa) — L, ¥' = 2y — Ya)/(¥»
— y,) — 1, and carets denote spectral coefficients. The
two methods described below differ in how they de-
termine the spectral coefficients.

a. The Chebyshev-tau method

The tau approximation is obtained as described in
section 2b of Part I, using an inner product which is a
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double integral with the form (3.7) of Part I in both x'
and y'. Starting from the advective form (2.1), the tau
equations are

dum,, N

dat

dmn
dt

+an+fumn+¢(01)_ Goun > (3.2)
APmn
di

where A, Byun, Coun and D, are the spectral coeffi-
cients of the nonlinear terms 4 = udu/dx + vdu/dy, B
= udv/dx + vov/dy, C = ud¢/dx + vd¢/dy and D
= ¢(du/dx + dv/dy), respectively, and the superscripts
(1, 0) and (0, 1) denote the spectral coefficients of x
and y derivatives, respectively. Note that to take such
derivatives in spectral space the standard Chebyshev
derivative relation must be modified to take into ac-
count the domain length, e.g.,

+Cmn+Dm+¢(u“°>+6£2;}’)=me

1,0 ~(1,0 —_
i1 z,,—usn+a,,,—zm(

2 ):2,,,,., (3.3)
—

Xb

where ¢ = 2 and ¢, = 1 for m > 0. Although for
simplicity we have assumed that f'is constant in (3.2),
the B-plane case also can be handled easily by noting
that

-~ 1 A
(yu)mn = E(ya +yb)vmn

1 A A
+ Z (yb - ya)(cn—lvm,n—l + vm,n+l)’ (34)

where we take 9, ., = 0, with a similar formula for

(YV)mn

As in most spectral models, one can compute the
spectral coefficients of the nonhnear terms in (3.2) from
the dependent variables i, D, and ¢y, by the trans-
form method of Eliasen et al. (1970) and Orszag (1970).
For example, to compute the spectral coeflicients of
udu/dx, one starts with 7,,,, and 71, in spectral space,
transforms these to physical space, multiplies them
pointwise there, and transforms their product back to
spectral space. The transforms can be computed via
the standard discrete Chebyshev transform formulas
[(3.17), (3.18) of Part I]; with at least 3M/2 and 3N/2
physical space points in x and y, respectively, all of the
coefficients needed in the model are computed exactly,
i.e., without aliasing, The transform method requires
O[MN(logM + logN)] operations using the FFT al-
gorithm in the transforms and O[MN(M + N)] oper-
ations without it, in contrast to the O(M2N?) operations
required when using the method of interaction coef-
ficients.

The tau equations (3.2) are applied for most of the
modes in the model, and the remaining degrees of free-
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dom are used to satisfy the boundary conditions applied
to the series expansion (3.1) as a whole. In practice,
one can simply predict all model variables from (3.2),
and then overwrite some of the last spectral coeflicients
In m or n as appropriate by new values obtained from
the boundary conditions. For example, applying the
wall condition at x = x, and transforming in y gives

M
> —1)"i,,=0 (0<n<N),

m=0

3.5)

from which we can diagnose #,,, in terms of the other
coefficients i,,, for each n. Other boundary conditions
can be treated similarly, i.e., by applying them to the
series as a whole. Note, however, that while linear
boundary conditions can be treated easily in spectral
space by transforming them in one direction as in (3.5),
nonlinear boundary conditions must in general be
treated directly in physical space, which is more awk-
ward since it involves additional transforms.

The tau equations (3.2) were developed from the
advective form (2.1), but the rotational form (2.2) can
also be used. In practice, the rotational form is more
efficient since it requires fewer transforms to compute
the nonlinear terms than does the advective form (9
instead of 12). In either case the Chebyshev-tau equa-
tions closely parallel the continuous form of the model,
and programming is relatively easy (with explicit time
differencing) once a set of routines for standard oper-
ations such as transforms and derivatives is developed
(a package of such routines is available from the au-
thors). Nevertheless, Chebyshev—collocation methods
are still easier, as will be seen below.

b. The Chebyshev-collocation method

The formulation of the Chebyshev—collocation ver-
sion of the shallow water model is simple. We again
use the expansion (3.1), and introduce the collocation
points (X;, i) corresponding to X} = cos(jx/M), j = 0,

, M and y} = cos(kn/N), k = 0, , N. The
collocation equations can then be written directly from
(2.1) as

dli'k ~ (1, 0,1 — 1,0) =
—dlj jkufk O+ vjku( ) = fUp+ ¢j(k =Fj
dvj 1,0) <o n_
790+, 000 + £z +o% =G,
dt ]k Jjk ik jk f ik jk | (36)
do 1,0 0,1
d] + ujk¢( ) k¢( )
1,0 0,1 =
+(@+ Gt ” + 0% ) = O

where a subscript jk denotes a value at the point (X,
¥i), and the superscripts (1, 0) and (0, 1) denote the x
and y derivatives, respectively, as before. To compute
these derivatives one uses the usual collocation pro-
cedure described in Part I: transform to spectral space,
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take the derivative there, and transform back to phys-
ical space. A total of 12 transforms is required for (3.6),
the same as for the corresponding collocation equations
generated from the rotational form (2.2); these trans-
forms are all one-dimensional and equal in length to
the truncation, whereas the transforms needed in the
tau method are all two-dimensional and longer than
the truncation. No special treatment is needed for the
nonlinear terms; other problems with more compli-
cated nonlinearities (even transcendental ones) are
handled with the same simplicity.

Boundary conditions for the collocation method are
formulated exactly as in the continuous case, since the
model variables iy, Ui and ¢y are carried at the
boundary points. For example, to apply the wall con-
dition one simply sets the corresponding values of i
and Dy to zero, e.g., i = 0, k =0, , N, for the
boundary x = x,. Similarly, the characteristic boundary-
condition specifies the incoming combination u,
— 2(¢ + ¢)"? at the boundary; to determine both u,
and ¢ there we simply require that the outgoing quan-
tity u, + 2(¢+ ¢)'/? be unchanged from its value as
predicted by the interior equations (3.6). However, the
balance boundary condition (2.3) leads to implicit
equations due to the global dependence of the Che-
byshev derivative relation; this boundary condition is
easier to implement in a predictive form, obtained by
substituting for du/dx from the continuity equation.

The price one pays for the simplicity of the collo-
cation method is the introduction of aliasing. In the
nonlinear advection process there is a transfer of energy
between scales of motion, with information from the
resolvable scales [here, T,,(x')T,(y') form < M and n
< N] cascading to the unresolvable scales (m > M or
n > N). In the tau method the.contributions to the
resolvable scales are computed exactly and the contri-
butions to the unresolvable scales are simply neglected.
In the collocation method the evaluation of a nonlinear
term in general takes the information which should go
into unresolvable scales and spreads it over the resolv-
able scales. The consequences of such aliasing in a
Chebyshev-collocation model are not immediately
clear. Orszag (1971, 1972) has made a case that aliasing
need not be regarded as a type of error, and Fox and
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Orszag (1973) suggest that the nonlinear numerical in-
stabilities sometimes encountered in finite difference
schemes (Phillips, 1959) may be avoided in collocation
methods by using rotational forms of the equations
such as (2.2). We will examine the latter point in the
following section, in which we present results from the
Chebyshev models developed above.

4. Numerical results

In this section we first examine the stability and ac-
curacy of the Chebyshev spectral models developed
above, using a simplified one-dimensional case for
which analytical results can be computed. We then
present numerical results from two-dimensional mod-
els and make some observations regarding the relative
efficiencies of the tau and coliocation methods.

a. One-dimensional results

Consider a y-independent version of the shallow wa-
ter equations on an f~plane, linearized about a basic
state at rest. In this simple case, the stability of the
Chebyshev-tau and Chebyshev—collocation models
with various (linear) boundary conditions can be an-
alyzed by matrix methods. We do this here by com-
puting numerically the eigenvalues of the space dis-
cretized model for various values of model parameters.
Table 1 gives the largest time step At for which the
various models are absolutely stable using the six ex-
plicit time differencing schemes considered in Part 1.
Additionally, results are given for the filtered leapfrog
scheme (FLF), i.e., the leapfrog scheme coupled with
the Asselin-Robert filter (Haltiner and Williams, 1980),
using the filter parameter ¥ = 0.01 for the wall and
balance boundary conditions and vy = (.5 for the char-
acteristic boundary conditions. The time steps are nor-
malized by the speed c, the spectral truncation N, and
the domain size / = x; — Xx,, thus making them essen-
tially independent of these parameters; they are also
normalized by the number s of “stages” (i.e., function
evaluations per time step) to indicate relative efficiency.

With reflecting (wall or balance) boundary condi-
tions, all eigenvalues are pure imaginary, and the FLF
scheme is the most efficient; however, the RK4 scheme

TABLE 1. Normahzed time step ¢cN2At/(s!) for stability for the y-independent shallow water model with various
time differencing schemes and boundary conditions.

Chebyshev-collocation Chebyshev-tau.

Scheme Wall Balance Characteristic Wall Balance Characteristic
FOR 0.00 0.00 2.20 0.00 0.00 " 1.70
MAT 1.12 1.11 341 0.45 0.45 0.42
AB2 0.00 0.00 4.05 0.00 0.00 0.85
RK2 0.00 0.00 3.72 0.00 0.00 0.85
AB4 0.96 0.95 2.02 0.39 0.38 0.25
RK4 1.59 1.57 3.84 0.64 0.63 0.59
FLF 2.22 2.20 3.25 0.89 0.89 0.56
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may be a better choice in general, since it is much
more accurate (and has no computational modes) and
is only slightly less efficient. With characteristic
boundary conditions, some eigenvalues have negative
real parts (corresponding to energy propagating out of
the domain), and the normalized time step required
for stability is very close to that obtained in Part I for
the one-dimensional advection equation (taking into
account the domain length of the latter problem). In
particular, the FLF scheme is unstable except for very
small time steps or very large filter parameters (e.g., v
= (.5), the RK4 scheme is probably the best choice
for the collocation method, and the RK2 and AB2
schemes are slightly more efficient for the tau method.

In the linearized, y-independent problem described
above, the continuous solution on an infinite domain
converges to that of the corresponding balanced (geo-
strophic) model as ¢t = oo (provided the initial con-
ditions are geostrophic and the forcing tends to zero
as t —> o0). The latter solution (the final adjusted state)
can be computed easily from the potential vorticity
equation, thus providing a standard to which the nu-
merical solution computed on a bounded domain can
be compared. To test the accuracy of the models with
the various boundary conditions, we consider a test
case with the initial fields #/, v’, ¢’ all zero and the
geopotential forced by

O(x, 1) = —Pe~ 204124 ~3¢=2lt0, 4.1)

where X is the e-folding width. The time dependence
of (4.1) is such that the forcing starts at zero, rises
smoothly to a peak at ¢ = ¢y, and decays smoothly to
zero, with the time integral of the forcing (and hence
the final adjusted state on an infinite domain) inde-
pendent of the time scale #y. For the results presented
here we use x; = 200 km and /=5 X 1073 57! (cor-
responding to the latitude 20°N). Figure 2 shows the
analytical final adjusted state on an infinite domain
for ¢ = 250, 50 and 10 m s™!, corresponding roughly
to the external mode, first internal mode, and sixth
internal mode in a compressible hydrostatic atmo-
sphere, respectively. The forcing amplitude (arbitrary
in this linear problem) was chosen as ® = ¢?/10 so that
in each case the final fields «’, v’ and ¢'/c would be of
order 1 ms™".

In view of the symmetry of the forcing (4.1), the
numerical models were run on the bounded domain
[Xa, x5] = [0, 1000 km] with a wall at x = 0. The
spectral truncation N = 16 was sufficient to resolve the
solution, and RK4 time differencing was used with the
time step chosen small enough that time differencing
errors were negligible. Boundary values needed for the
inhomogeneous characteristic condition were obtained
from the solution of the corresponding balanced model.
Two forcing time scales were considered: “slow” forcing
with ¢, = 12 h and “fast” forcing with #, = 3 h, with
the fast forcing generating more gravity waves. Table
2 gives the L, errors (computed with a trapezoidal ap-
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FIG. 2. Analytical final state of the linearized y-independent shallow
water model for (@) ¢ = 250 m s™!, (b) ¢ = 50 m s}, and (¢) ¢ = 10
m s~'. The dashed curve represents v (left scale) and the solid curve
represents ¢/c (right scale).

proximation as in (3.23) of Part I and scaled by the
domain length) in the Chebyshev—-tau solution at £ = 5
days (the errors were averaged from ¢ = 4 daystot = 5
days where necessary to smooth the effects of trapped
gravity waves). From these results we conclude the fol-
lowing. First, the inhomogeneous characteristic
boundary condition gives the best results in each case,
usually by many orders of magnitude. Second, with
little balanced flow near the boundary (¢ = 10 m s™})
the two forms of the characteristic condition give com-
parable errors (note that ¢ = 10 m s™! is small enough
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TABLE 2. Errors in the Chebyshev-tau solution of the y-indepen-
dent shallow water model with a wall at x, and various boundary
conditions at x, (I and H denote the inhomogeneous and homoge-
neous forms of the characteristic (C.) boundary condition, and num-
bers in parentheses denote exponents of ten).

L, errors (m s™") at ¢ = 120

MONTHLY WEATHER REVIEW

hours
c to Boundary
(ms™') (hours) condition u v ¢/c
LC. 34(-9) 1.0(-6) 2.8(-8)
12 H.C. 6.8 (—8) 86(=2) 74(-1)
Balance 5.1(=3) 6.1(—4) 4.8(-3)
Wall 68(—4) 44(-1) 37(0)
250
: IC. 43(-14) 10(-6) 1.3(-8)
3 H.C. 83(—15) 8.6(-2) 7.4(-1)
Balance 24(-1) 27(-2) 2.1(-1)
Wall 4.1(=2) 44(-1) 3.7(0)
1C. 50(-8) 1.0(—6) 9.6(-8)
12 H.C. 1.4 (—7) L4(-1) 26 (1)
Balance  3.6(-2) 15(-2) 2.6(-2)
Wall 1.4 (—2) 1.9(-1) 351
50
1C. 23(-14) 1.0(-6) 6.0(-8)
3 H.C. 1.0(—13) 14(-1) 26(-1)
Balance 4.2 (—1) 1.9(-1) 351
Wall 30(-1)  21(=1) 47(-1)
1.C. 7.4 (—3) 6.8(—3) 4.5(-3)
12 H.C. 7.3(=3) 6.8(-3) 5.1(=3)
Balance 23(-2) 17(-2) 13(-2)
Wall 2.1(=2) 20(-2) 1.6(=2)
10
1.C. 3.0(-2) 22(-2) 152
3 H.C. 3.0(-2) 22(-2) 15(=2)
Balance 1.1 (=1 7.8(=2) 7.4(-2)
Wall 1.2 (—1) 7.3(-2)

that here the gravity—inertia waves are substantially re-
flected, and the errors decay only slowly with time).
Third, the balance condition is preferable to both the
wall and homogeneous characteristic conditions when
there is significant balanced flow near the boundary (¢
= 50 and 250 m s™!) and the forcing is slow. Finally,
with fast forcing the balance and wall conditions give
comparably poor results.

b. Two-dimensional results

To test the Chebyshev spectral versions of the two-
dimensional shallow water model we use a two-di-
mensional analogue of the above test case, forcing the
geopotential field by the mass sink

X~ XC)Z _ (y— yc)2]4t2t53e‘2’”°
x b

ox,y, )= <I>exp[ —(
0 Yo

4.2)

with e-folding width xp = yp = 200 km, time scale %,
= 6 hours, and amplitude ® = 6250 m? s~>. For all of
the results presented below the model domain is
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[~2000 km, 2000 km] X [-2000 km, 2000 km], cen-
tered at 30°N, and ¢ = 50 m s~!. We use the spectral
truncation M = N = 24; note that in a finite difference
model with the same number of degrees of freedom,
the e-folding width of the forcing would be approxi-
mately equal to the mesh spacing.

First, we examine the performance of the charac-
teristic boundary condition by running the linear model
on an f-plane with the initial u, v and ¢ fields all zero
and the forcing centered at x, = y, = 0. Figure 3 shows
the Chebyshev-tau solution at ¢t = 6, 12 and 24 h. In
these and subsequent figures, the geopotential field ¢/
c¢is represented by contour lines (with contour interval
2 m s™!) and the velocity field u, v by vectors as discrete
points (scaled so a vector from one point to the next
would have magnitude 15 m s7'). In this experiment
the gravity waves generated by the forcing propagate
out of the domain with no evidence of reflection, leav-
ing behind a geostrophically balanced vortex. Che-
byshev—collocation results for this test case are very
similar and hence are not shown here.

For a more realistic test case we initialize the model
with the zonal flow

Y= Va )]
Yb—Ya

with U = 7.5 m s™! and ¢ in geostrophic balance on a
B-plane, and then use the forcing (4.2) with center lo-
cated initially at x, = 1000 km, y. = —1000 km and
advected with the initial flow (4.3) to generate a vortex
in the region of easterly flow. The initial 2, v and ¢ are
used to provide the boundary values required by the
inhomogeneous form of the characteristic boundary
condition as the solution evolves. We ran the nonlinear
Chebyshev—collocation version of the model for this
test case using explicit RK4 time differencing with a
time step of 10 minutes; on a CRAY-1 compuiter the
execution time required was approximately 7 seconds
per model day. Figure 4 shows the resulting solution
atz =1, 2, 4, 6 and 8 days. After one day the forcing
is essentially zero, and the vortex simply propagates
with the surrounding flow, recurving due to the effects
of 8 and the vorticity gradient of the surrounding flow.

The results in Fig. 4 were computed by the collo-
cation method using the advective form (2.1). Corre-
sponding solutions at ¢ = 1 day computed by the col-
location method using the rotational form and by the
tau method using both forms are shown in Fig. 5. The
collocation solution from the rotational form differs
markedly from the other three solutions, indicating that
the advective form is probably the most appropriate
for the collocation method. In contrast, the tau method
gives very similar results with either form of the equa-
tions (although the rotational form is more efficient,
as explained below). We note that even though the tau
and collocation methods treat the nonlinear terms dif-
ferently, the solutions produced are quite similar. In

u(x,y,0)=-U cos[vr( 4.3)
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particular, the collocation method has aliasing errors,
and yet we saw no evidence of nonlinear numerical
instability in the experiments which we performed.
These conclusions may not extend, however, to phys-
ical situations in which the distribution of energy be-
tween spatial scales is different.

All of the numerical results for this test case show
some small oscillations in the geopotential field. One
possible source is the cascade of energy from large to
small scales due to nonlinear interactions, coupled with
the limited resolution of the numerical model: features
which are not adequately resolved in spectral methods
tend to cause oscillations across the domain on the
smallest resolvable scales. Alternately, they could also
be due to inward propagation of errors due to inexact
specification of boundary data. In either case, simply
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F1G. 3. Chebyshev-tau solution of the linear shallow water model
with RK4 time differencing for the forcing (4.2) centered at (0, 0)
with all initial fields zero, at ¢ = 6, 12 and 24 hours as labeled.

using more Chebyshev modes will not completely
eliminate the problem. Rather, a small amount of dis-
sipation should be used, both to represent the physical
process of energy cascade to scales which are not re-
solved, and to smooth errors from inexact boundary
data. Note, however, that no dissipation is required
simply to run the model or to cover up inadequacies
of the numerical method: the Chebyshev models run
quite well without any dissipation, even in the above
case where the number of modes used is barely suffi-
cient to resolve the solution.

One significant difference between the tau and col-
location methods for this problem is their efficiency.
Table 3 shows the computer time required tq evaluate
all terms in the model equations using each g the»,gr-
ious discretization methods and equation {orms with

&

%

w



t = 48:00:00

t = 24:00.00

| WO DU WU W DU W ST S

0 1000 2000
x (km)

t = 144:00:00

ORI S| B G VAT '

—2000d e ~2000 41
-200 -1000 0 1000 2000 ~2000 -1000
x- (km)

t = 96:00:00

y (km)

-1000 =~y - gpm = =

— e = e =

] ==t
-2000 FUES B G B B -2000 PO SUT SUNT S RS U WA Y Y P S U ST W
-2000 -1000 0 1000 2000 -2000 -1000 o] 1000 2000
: x (km)

x (km)

t = 192:00:00

FIG. 4. Chebyshév-collocation solution of the nonlinear shallow
water model (advective form) for the forcing (4.2) centered initially
at (1000 km, —1000 km) and moving with the initial zonal flow (4.3),

att=1,2,4,6and 8 days as labeled.

{ SV O S W S G U S S |

-2000 I—+—mi L —
-2000  -1000 0 1000 2000

x (km)



SEPTEMBER 1987

a t = 24:00:00
2000

B I . 2

f——m—m = A R ———.

1000 F = = = == ===

y (km)

- e e e— o

-2000

PN DU S S\ SN0 SN VUK AT S T G VAT SN S N SR DU SO
-2000 -1000 0 1000 2000
x (km)
c t = 24:00:00
2000 T e B e o v e e e . B

y (km)

PUDRTEIIN B W

1000

-2000 PO ST TN S S T U S S N S
-2000 -1000 0

x (km)

2000

the spectral truncation M = N = 24; these estimates
are based on timing tests performed on a CRAY-1
computer using fully vectorized code. In the nonlinear
case the collocation method requires less work per time
step than the tau method by a factor of about 3, pri-
marily because the transforms involved are shorter in
length and one-dimensional. In addition, with explicit

TABLE 3. CRAY-1 execution time (ms) required to evaluate all
terms in the shallow water model with M = N = 24,

SCOTT R. FULTON AND WAYNE H. SCHUBERT

Equation form Chebyshev—collocation Chebyshev-tau
Linear 2.8 1.9
Advective 39 14.2
Rotational 39 11.5
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FIG. 5. Chebyshev solution of the nonlinear shallow water model
at ¢ = 1 day as in Fig. 4(a) except using the (a) collocation method,
rotational form of equations, (b) tau method, advective form, and
(c) tau method, rotational form.

time differencing the collocation method allows time
steps which are larger by a factor of about 5 (although
a matrix stability analysis is impractical in two dimen-
sions, numerical experience indicates that the stability
conditions for the various models generally follow those
of the one-dimensional models reported in Table 1).
Thus while both the Chebyshev-tau and Chebyshev-
collocation methods work, the collocation method is
about an order of magnitude more efficient—with ex-
plicit time differencing—for the same number of
modes.

5. Concluding remarks

In this paper we have applied Chebyshev spectral
methods to the nonlinear shallow water equations in
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two dimensions. The methods are straightforward to
implement, and result in models which have the high
accuracy of the spectral approach while allowing the
use of open boundary conditions. While the test cases
considered here do not involve enough physics to be
regarded as models of the real atmosphere, the results
presented suggest that the Chebyshev methods could
be used in limited-area meteorological models to treat
the dynamics with high accuracy.

Two basic projections were considered here: tau and
collocation. Numerical results indicate that Che-
byshev-tau models of the shallow water equations
should be based on the rotational form of the equations
(for efficiency), while Chebyshev-collocation models
should be based on the advective form (for accuracy).
The tau method may seem preferrable, since it involves
no aliasing, but in practice the aliasing introduced by
the collocation method may not be a problem: the nu-
merical results from both methods were similar for the
test cases studied here, and we found no evidence of
nonlinear numerical instability. On the other hand,
the collocation method is about an order of magnitude
more efficient than the tau method, at least with explicit
time differencing, and is also somewhat easier to pro-
gram. Thus the collocation method is probably the
more useful of the two. Given the close connection
between the shallow water equations and the full prim-
itive (hydostatic) equations, we believe that these con-
clusions should carry over to the latter system, taking
into account, of course, the existence of vertical modes
with widely differing phase speeds.

Several topics deserve further study. First, Chebyshev
models should in practice include a small amount of
dissipation, not to cover up for inadequacies of the
numerical method, but to represent the physical cas-
cade of energy to scales which are not resolved in the
model. Unfortunately, simply including friction terms
proportional to the Laplacian of model variables leads
to a stability condition (for explicit time differencing)
of the form At = O(N™*); this is probably unduly re-
strictive when the specific form of the friction is simply
a somewhat arbitrary representation of dissipation. One
approach here is to treat such friction terms implicitly;
another is to replace them altogether with a spectral
filtering of the model coefficients. Second, while the
Chebyshev models are practical with explicit time dif-
ferencing, in cases where propagating gravity waves
contribute little to the solution one might obtain sub-
stantial gains in efficiency (especially with the tau
method) by treating the terms responsible for these
waves implicitly, as is done in finite difference and
global spectral models (e.g., Kwizak and Robert, 1971).
Finally, the accuracy and efficiency of Chebyshev spec-
tral and finite difference models of the shallow water
equations should be compared in detail. We are pres-
ently studying all of these topics. .

Finally, we note that the spectral techniques consid-
ered in this study may in fact be foo accurate to be of
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much use in some limited-area models. As stated pre-

viously, one of the fundamental problems in limited-

area modeling is to minimize the impact of compu-

tationally imposed boundaries. The numerical exam-

ples presented here suggest that errors due to inexact

specification of boundary conditions and boundary

values may be much larger than spectral discretization

errors. In more complicated models, especially those

intended for operational use in forecasting, additional

sources of error include the specification of initial fields
and the representation of small-scale physical processes
such as those occurring in cumulus clouds. Chebyshev
spectral methods probably allow such problems to be
solved much more accurately than they can be specified
at present. Spectral methods may effectively eliminate
discretization errors from limited-area models; much
more work is needed to reduce the other sources of
error.
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