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ABSTRACT

The separation of the vertical structure of the solutions of the primitive (hydrostatic) meteorological
equations is formalized as a vertical normal-mode transform. The transform is implemented for arbitrary
static stability profiles by the Rayleigh-Ritz method, which is based on a variational formulation closely
connected with energetics. With polynomial basis functions the order of accuracy is exponential. When
vertical transforms of observed fields are computed, energy may be aliased onto the wrong vertical modes;
this aliasing may be reduced substantially by a careful choice of sampling levels. The spectral distributions
of observed tropical forcings of the wind and mass fields are presented.

1. Introduction

The action of gravity makes the vertical dimension
of the atmosphere fundamentally different than the
horizontal. In many problems it is convenient to
separate the vertical structure of the motion from the
horizontal structure. Lamb (1932, Articles 311-312)
used this idea in studying long waves in the atmo-
sphere and gave references to earlier work of a similar
nature. Taylor (1936) was perhaps the first to show
that a compressible atmosphere may support free
oscillations with several different vertical structures;
each of these modes has the horizontal structure of
the motions of an incompressible fluid with depth
equal to a different value of the separation constant,
for which he introduced the term “equivalent depth.”
Since that time this concept has been applied in the
study of atmospheric tides (Siebert, 1961; Chapman
and Lindzen, 1970), atmospheric waves (Jacobs and
Wiin-Nielsen, 1966; Lindzen, 1967; Wiin-Nielsen,
1971a,b), geostrophic adjustment (Fulton and Schu-
bert, 1980; Silva Dias et al., 1983), normal mode
initialization (Daley, 1981; Kasahara and Shigehisa,
1983), and the formulation of lateral boundary -con-
ditions (Oliger and Sundstrom, 1978; Hack and
Schubert, 1981)—to name only a few of the many
applications.

In the standard separation of variables each of the
dependent variables is represented as a horizontally
varying part times a vertically varying part. Substi-
tution into the governing equations then yields sep-
arate equations for the horizontal and vertical struc-
tures, which are related by the separation constant.
The solutions of the vertical structure equation with
appropriate boundary conditions are shown to form
a complete set, and thus the dependent variables can
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be expanded in terms of them. An alternate approach
formalizes the separation of vertical structure as a
vertical normal mode transform (Silva Dias et al,,
1983), yielding the same vertical structure problem
and normal mode expansions without assuming sep-
aration of variables. In this way the connection
between the primitive (hydrostatic) meteorological
equations and the shallow water equations is made
explicit. This vertical transform and its implementa-
tion in practice are the subject of this paper.

When using realistic stability profiles the vertical
structure problem must be discretized and solved
numerically. Often this has been accomplished by
discretizing the governing equations and computing
the normal modes of the discretized system (e.g.,
Temperton, 1984), leading to discrete forms of the
transform. In this paper we derive the transform in
its vertically continuous form instead, and then dis-
cretize that directly. In Section 2 we review the
formulation of the transform and discuss its properties,
independent of discretization. The approximate so-
lution of the vertical structure problem and the
implementation of the transform are discussed in
Section 3. In Section 4 we consider the questions of
accuracy and aliasing, and then apply the transform
to observed sources of heat and vorticity using ob-
served stability profiles. Concluding remarks are given
in Section 5.

2. Theory

In this section we review the vertical transform
and its properties. The discussion is independent of
geometrical or dynamical approximations in the hor-
izontal (e.g., fplane, 3-plane, quasi-geostrophy, etc.).
We use pressure as the vertical coordinate, since the
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corresponding weight function (pseudodensity) in the
natural vertical inner product is constant, but the
problem may be formulated similarly in terms of log
pressure (Silva Dias et al., 1983), sigma coordinates
{Kasahara and Puri, 1981) or physical height (Oliger
and Sundstrém, 1978).

a. Governing equations and boundary conditions

Consider the motions of a compressible atmosphere
in hydrostatic balance. The horizontal momentum,
hydrostatic, continuity and thermodynamic energy
equations may be written as

v

§+kav+V¢‘=F, (2.1a)
dp RT
—+—=0, 2.1b
w D (2.1b)
ow
Vev+ —= .
v o 0, (2.1¢)
oT ps
¢ 3 p w=0, (2.1d)

with the following definitions:

pressure

time

horizontal velocity

vertical p-velocity _
deviation of temperature from 7{(p)
deviation of geopotential from ¢(p)
vertical unit vector

Coriolis parameter

gas constant for dry air

specific heat at constant pressure
=R/c, - -
static stability [=p~%(«kRT — pdRT/dp))
‘del operator at constant p.
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We may regard (2.1a) and (2.1d) as being linearized
about the motionless hydrostatic basic state (7, ¢),
or may retain the nonlinear terms in F and Q, which
also may include friction or specified forcing terms.
The atmosphere is taken to be vertically bounded,
with the vertical p-velocity required to vanish at the
top boundary p = pr = 0 and the actual vertical
velocity required to vanish at the bottom boundary
P = pg. After linearization these boundary conditions
are

w=0

d¢ RT
E-(E——w=0 at p=pg
at p

at p=pr
2.2)
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Eliminating 7 and  between (2.1b)-(2.1d) yields

i) P
Li—t+Vev=L{—}. .
{ &} v L«{ at} 2.3)
Here L is the vertical differential operator
a1a( )]
L{:}=~—~—|-— 2
R P o L
and the “forced geopotential” @, defined by
9 {39 ‘
—D 5]—) (E) = KQ, (2.5)

is the geopotential which would result from Q if the
motion were constrained to be nondivergent. Simi-
larly, eliminating « from the boundary conditions
(2.2) using (2.1b) and (2.1d) yields

dp 9P _ ¢ a_rg] _
ot at] B Bﬂ[az a)=% 26
where By and Bjp are the boundary functionals
-
4]
bmpr 2.7)

a( -
ma1=[p 52 22
P=PB

In obtaining (2.6) we have set ®/9t = 0 at p = pg,

- thus fixing one of the constants of integration implicit

in (2.5).

b. The vertical transform

The only vertical derivatives in the governing equa-
tions (2.1a) and (2.3) appear in the term L {(d¢/dr)
— (8%/d1)}. Following Sneddon (1972), the properties
of L are used to design the vertical transform in such
a way that it eliminates this vertical structure. Defining

the vertical inner product
1 DB
f u(pyv(p)dp,
D

U, vy =
< > D — Pr Jpr

for any functions u and v of pressure p, we seck an
integral transform of the form

TPl = ty = {t, ¥y, (2.9)

where the kernel ¥,(p) of the transform is to be
chosen so that

2 _39\]_, (% _o%,
T[L(ar at)] k”( ot at)’ (2.10)

with A, a constant. Substituting from (2.4), (2.8) and
(2.9) in the left side of (2.10) and integrating by parts
twice yields

(2.8)
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"dp\ar or
The boundary conditions (2.6) then imply that the
desired property (2.10) will hold provided that we

choose- ¥,(p) and )\, as solutions of the vertical
structure problem

L{¥.(p)} = \¥ulp) |
BA¥,] = Bg[¥,} =0

(2.11)

(2.12)

The theory of Sturm-Liouville eigenvalue problems
such as (2.12) is well known (e.g., Courant and
Hilbert, 1953; Stakgold, 1979); we use this theory
freely in what follows to establish various properties
of the vertical transform. In this discussion C®[p,
ps] will denote the space of all real-valued functions
u of pressure p with dYu/dp’ continuous on the
interval [pr, pg] for j = 0, ..., k. For concreteness
we assume that ¢ € CY[py, pg] with o(p) > 0 for pr
< p < pg, although this assumption may be relaxed
somewhat. A natural domain for the operator L is
then D = {u € CP[py, ppl:BAu] = Bglu] = 0};
integrating by parts twice shows (Lu, v) = (u, Lv)
for all ¥ and v in D so L is self-adjoint.

To obtain the inverse vertical transform we use the
fact that (2.12) has a countably infinite set of solutions
{Ans ¥.(P)}i2o with the following properties.

(i) The eigenvalues A, are real and satisfy Ay < A\,
<+« with A, — 0 as n — oo;

(i1) The eigenfunctions ¥,(p) lie in D and are
orthonormal in the inner product (2.8), i.e. (¥,,, ¥,)

s = Il m=n{,
0 m#n)’
(iii) The eigenfunctions ¥,(p) form a complete set.

Property (iii) means that any function u of p may be
expanded as

wp) = 2 4,Y(p),

n=0

(2.13)

with pointwise convergence if u € COps, pg] and
uniform convergence if ¥ € D. In view of property
(ii) the coefficients in this expansion are given by i,
= (u, ¥,). Since this formula is identical to the
transform (2.9), (2.13) is the desired inverse transform.

Applying the transform (2.9) to the governing
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equations (2.1a) and (2.3) and using the property
(2.10) results in

? + Vo, = F,, (2.14a)
A, 1 _ . 0%,
Ve, = 2.14b
o T Tar (2.140)

which is formally equivalent to the divergent baro-
tropic system (i.e., the shallow water equations). The
eigenvalue A, is often written as (gh,)~', with g the
acceleration due to gravity and A4, the so-called
“equivalent depth.” As we will show, each A, is
positive so we can define real “phase speeds” ¢, by
¢, = (gh,)'? = N, '/%; each ¢, is the (horizontal) phase
speed of the single vertical mode n which has vertical
structure ¥,(p) in the stratified model. Since the
solution of the stratified problem has been reduced
to the superposition of solutions of barotropic prob-
lems corresponding to the various vertical modes, we
refer to (2.9), (2.13) as the vertical normal mode
transform pair.

¢. Properties of the transform

The energetics of the stratified model (2.1) and the
transformed model (2.14) are related by the Parseval
relation

(u, vy = 2 by, (2.15)
n=0

which may be obtained formally by expanding u(p)

and v(p) and using the orthonormality of the functions

WV,. Taking the dot product of v with (2.1a) and

integrating with respect to p yields the kinetic energy
equation -

a% (% o, v>) + (V) = (L F),  (2.16)

where for any two vectors a and b we interpret (a,
b} as {a+b, 1). Then using (2.15) we can write (2.16)
as

0 1 . © R
> [ag (— 0,,-6,,) + 0,,-V¢,,] = > VoK, 217
n=0 4 2 n=0
Since (2.17) holds for each n indlvidually, as shown
by takmg the dot product of (2 14a) with v,, we can
identify 1v,-V,, V,- Vén, and ¥, K, as the contribu-
tions from vertical mode »n to the kinetic energy,
conversion of kinetic to available potential energy,
and generation of kinetic energy, respectively.
Similarly, multiplying (2.3) by ¢, integrating and
applying (2.15) yields the available potential energy
equation
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% [6 (—1- 9'ﬁ) + ¢V« v,,] %:j % (2.18)

a\2 ¢’

Here the available potential energy is

© 1 .
Yoo )

n=0 2 Cn
1 flw 1 (a¢)
= d,
2(ps — p7) [ pr ¢ \Op b

(RTd)Z)_ ] (2.19)

with the last equality valid only if Q = 0 at the top
and bottom boundaries. Since (2.18) holds for each
n individually, as shown by mulnplymg (2.14b) by
¢n, we can identify $¢,%/c,?, ¢,V +¥,, and

ﬂ 0%,

2 o
as the contributions from vertical mode »n to the
available potential energy, conversion from available
potential to kinetic energy, and generation of available

potential energy, respectively.

The vertical structure problem (2.12) has an inter-
esting variational formulation which is closely related
to (2.19). To obtain it we define for any # and v in
CYNpr, ps] the quantity

I O 0000,
<u’ v>E D — Dr [LT o(p)

+ (RLT uv)Fm] . (2.20)

where primes denote differentiation with respect to
p. Since this quantity is symmetric, linear in each
argument and satisfies (u, u)r > O unless u = 0,
(2.20) defines an inner product on CV[p;, pgl. We
refer to ( , ) as the energy inner product since
3{®, ¢)r is the available potential energy; it is related
to the vertical inner product { , ) by {u, v)g

= (Lu, v) when u and v are in D. The fact that
(u vyg = (Lu, v) when u and v are in D shows that
L is positive definite. In particular, 0 < <\If,,, ¥, g

= M\, for all n, establishing the claim made in the
previous section.

The variational problem associated with the vertical
structure problem consists of rmmmlzmg the func-
tional J[¥] = (¥, \I/>E over all ¥ in CP[pr, psl
subject to the constraint K[¥] = (¥, ¥) = 1. This
is equivalent to minimizing the functional I[¥]
= J[¥] — AK[¥], where X is a Lagrange multiplier
for the constraint. This functional may be written as

dp

v} =

DB
= G(p, ¥, ¥)dp, (2.21)

DB — P11

MONTHLY WEATHER REVIEW '

VoLumt 113
where’

\2 2

G, ¥, vy = ) (ﬂ

RT

with & = (p — pp)/(ps — py). Setting the variation of

(2.2!) equal to zero (with no boundary conditions
applied) leads to the Euler-Lagrange equations

) — A2, (2.22)

8G (9-(—;),=0 <p<

prl e , Pr<D<Dpg 2 23)
G
6\1,,—0 at p=pr, p=pp

Substituting (2.22) into (2.23) then yields the vertical
structure problem (2.12). The eigenmodes ¥,(p) thus
give at least stationary values of J[¥] subject to the
constraint; a precise formulation of the variational
problem is

A= JY,] = min{J[\P]:‘I/ € CU)[PT’ Dsl,
<\Il, \If> =1, (‘I’, \I/,,,> =0
m=0,...,n— D} (2.24)

Equivalently, A\, and ¥, are the minimum values and
minimizing functions of the Rayleigh quotient J[V]/
K[¥] = (¥, ¥)/{(¥, ¥). Physically this says that
the vertical normal modes ¥, correspond to states of
the atmosphere for which the ratio of available po-
tential energy to kinetic energy is minimized.

3. Implementation

For a few special stability profiles (e.g., ¢ = constant
or p’c = constant) the vertical structure problem
(2.12) may be solved analytically in closed form. In
most other cases [e.g., o(p) obtained from observa-
tions], approximate solutions must be sought. The
Rayleigh-Ritz method is appropriate for this problem;
its theory and error properties have been discussed
in detail by Ciarlet ez al. (1968) and Pierce and Varga
(1972), among others. In this section we consider the
use of the Rayleigh-Ritz method for the practical
implementation of the vertical transform.

a. Solution of the vertical structure problem

The Rayleigh-Ritz method for (2.12) proceeds from
the variational formulation (2.24). Recognizing that
in practice we cannot minimize J[¥] over all ¥ in
CYpr, psl, we choose a finite-dimensional subspace
Sx of CY[pr, psl and minimize J[¥] over it instead.
(The elements of Sy need not satisfy the upper and
lower boundary conditions, but better results generally
are obtained if they do.) Thus the Rayleigh-Ritz
method defines approximate eigenvalues A, and cigen-
functions ¥,(p) by

Ar = J[¥,] = min{J[¥]:¥ € Sy,
(¥, ¥,y=0 (m=0,...,

(¥, ¥) = 1,
n—1L  G.1)
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This variational problem leads to
(¥, W = 2(¥,, ¥) (@l ¥inSy), (3.2)

which is identical to the Galerkin equation for (2.12)
if the elements of Sy satisfy the boundary conditions.
To solve for A\, and ¥, we fix a basis {xo(p), - - .,
xMp)} for Sy. This introduces a one-to-one corre-
spondence between functions u(p) in Sy and (N + 1)
component vectors u = [ug, ..., #y]7 of their coor-
dinates with respect to this basis. In particular, each
W¥,(p) corresponds to a vector ¥, = [Yons - - . » Yanl’
with
N N
Y. (p) = Z lPj,n?(j(p)- (3.3)

Jj=0

Noting that we need only consider ¥ = x; (i = 0,
..., N)in (3.2) and substituting from (3.3) we obtain

N N
Z <Xi, Xj>E¢/j,n = Ay <Xi: Xj>¢j,n
=0 j=0

(i=0,...,N), (3.4)
which may be written in matrix form as
AY, = \,BY,. (3.5)

Here A and B are matrices of order N + | with
entries Alj = <X,‘, Xj>E and Bl] = <X,‘, X_,>, this
connection with the inner products guarantees that
both matrices are real, symmetric and positive definite.
Therefore, the generalized eigenvalue problem (3.5)
has solutions {A,, ¥,} ., with the following proper-
ties.

(i) The eigenvalues A, are real, with 0 <Xy < X,
< oo <Ay,

(i) The eigenvectors ¥, are orthonormal in the
sense ¥, BY, = 8y,

(iii) The eigenvectors ¥, form a complete set.

In view of property (i) we can define the approximate
phase speeds ¢, = X, "% As shown in the next
section, property (ii) implies that (¥,,, ¥, = 8,
and property (iii) implies that the functions ¥,(p)
span Sy. Thus the numerical solution obtained by
the Rayleigh-Ritz method preserves much of the
character of the analytical solution of (2.12).

b. Application of the vertical transform

Having obtained the approximate vertical structure
functions ¥,(p) in terms of the basis functions x;(p),
the application of the vertical transform is now
straightforward, amounting to simply a change of
basis. For any function u(p) in Sy we have the two
representations

N N .
wp) = 2 ux(p) = X 4, YD)

j=0 n=0

(3.6)
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The coefficients u = [ug, ..., uy]® and @ = [i, . . .,
iiy]T in these representations are related by

3.7

where T~! is the matrix whose columns are the
vectors ¥, and T = (BT~)". Thus (3.7) is a numerical
representation of the transform pair (2.9), (2.13).
Similarly, the inner products of any functions # and
v in Sy may be expressed as

=T, u=T4

N
(u, vy =v'Bu =¥Vl = X i,0,, 3.%)
n=0

N
(u, vV)p = vV'Au = VBl = 3, Nd,0,, (3.9)
n=0

where E = (T")TAT™! = diag[X,, ..., Anl.

¢. Basis functions

Many different types of functions may be used as
basis functions for the Rayleigh-Ritz method. If the
vertical transform is used within a numerical model
which employs a series expansion (i.e., finite element
or spectral) method in the vertical, the basis functions
of the numerical model are the natural choice for use
in computing the vertical transform (Daley, 1979,
Béland et al., 1983). In other applications the choice
of basis functions may depend on considerations of
accuracy, efficiency, storage required and ease of
programming.

Piecewise polynomials (splines) have become pop-
ular for use in the Rayleigh-Ritz method (Wendroff,
1965; Birkhoff et al., 1966; Johnson, 1969; Prenter,
1975). Typically, one chooses Sy as a space of piece-
wise cubic functions over a partition of the interval
[pr, psl, with a basis of B-splines (deBoor, 1978)
which satisfy the boundary conditions; “jump” con-
ditions arising from known discontinuities in o(p)
may also be built into such a basis. The approximation
of an arbitrary function f(p) by an element g in Sy
then involves solving a well-conditioned banded linear
system,; if f'is sufficiently smooth, this approximation
generally has accuracy O(N™*). Since the matrices A
and B are banded, the eigenvalue problem (3.5) may
be solved efficiently, e.g. by the algorithm of Peters
and Wilkinson (1969); the resulting approximate ei-
genvalues and eigenfunctions have accuracy O(N"%)
and O(V™3), respectively (Ciarlet et al., 1968). Greater
accuracy may be obtained by using higher-order
splines, at the cost of increased program complexity.

Still greater accuracy can be obtained by choosing
Sy instead as the subspace of all polynomials of
degree at most N + 2 which satisfy the upper and
lower boundary conditions. An analytic function f(p)
may be approximated by an element g of this subspace
with exponential accuracy; i.e., the error in the ap-
proximation is asymptotically O(e™™) with N, con-
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stant. Similarly, if the true eigenfunctions ¥,(p) are
analytic then the resulting approximate eigenvalues
and eigenfunctions also have exponential accuracy
(Ciarlet et al., 1968). There is a trade-off here between
accuracy and efficiency, since the matrices involved
are full. However, the high accuracy implies that NV
may be chosen relatively small, so the computer time
and storage required are in general inconsequential.
In view of the high accuracy and the ease of program-
ming with polynomials, we use this polynomial sub-
space for all results reported here.

To ensure that the matrices A and B are well
conditioned we construct a basis for the polynomial
subspace Sy from the Chebyshev polynomials as
follows. Mapping the interval pr < p < pp onto —1
<s<1bys=2ps— p)(ps — pr) — 1, we define

xi(P) = Tja(8) — a;To(s) — biT(s),
(0<j<N). (3.10)
Here 7; is the Chebyshev polynomial of degree j,
defined for s = cosf by Tj(cost)) = cos(jf) so that
To(s) = 1, T\(s) = s and Tja(s) = 25T;.(s) — T;(s);
further properties are given in Fox and Parker (1968).

The constants g; and b; are chosen so that each x;
satisfies the boundary conditions Brx;] = Bgixj]

= (), resulting in
2 _(RT\
ne-n(3)
Dp— D1 DO ] p=pg) -

(3.11)

With this basis the method is a Chebyshev-Galerkin
method (Gottlieb and Orszag, 1977). To compute the
elements of the matrices A and B we use a least-

a; = (—l)j + bj {1 +

b= (j+2)7

10° +

~

RELATIVE ERROR IN C,
o
.
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0 8 6 a4 32
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N

Fi1G. 1. Relative error |¢, — ¢,l/c, in the phase speeds as a
function of the truncation N for various vertical modes » as labeled.

MONTHLY WEATHER REVIEW

VOoLuME 113

10°

/

~

107 -

T/

Io-'ﬂ L

RELATIVE ERROR IN ¥,

PR W Y S |

lo—ll A

8 16 24
N

w
N

FIG. 2. Vertical norm of the error in the vertical structure
functions, || ¥, — ¥, |, as a function of the truncation N for various
vertical modes # as labeled. .

squares Chebyshev polynomial fit to [p*a(p)]”' and
compute the resulting integrals exactly by Ciauss-
Legendre quadrature. The eigenvalue problem (3.5)
is then solved by the EISPACK routine RSG, which
converts it to a standard symmetric eigenvalue prob-
lem via the Cholesky decomposition of B and solves
that problem by the QR algorithm.

Any continuous function f(p) can be approximated

100} T 03> -
2\ 1T
200} ' 1
300f .
2 400f -
E
W 500t -
& \
§ 600} C,=296.17
t | = 7580
o 700r ¢,= 4702
gool C,= 30.56 :
900} GATE -
PHASE I
I000L—1 PR
6 -4 -2 0 2 4 &

Yn

F1G. 3. First four vertical structure functions for the GATE
temperature sounding of Table 4. Corresponding phase speeds (m
s™') are listed at the lower left.
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TABLE 1. Percent energy in mode n for reconstruction of ¥, from values at 12 standard levels with pr = 50 mb.

m
Cn
n (m s7') 0 1 2 3 4 5 6 7 8 9 10
0 296.17 100 0 0 0 1 4 6 4 3 0 0
1 75.80 0 105 0 8 19 59 64 51 27 23 31
2 47.02 0 0 105 2 4 11 8 5 9 19 23
3 30.56 0 0 0 100 0 0 0 1 15 34 29
4 22.92 0 0 0 4 54 15 5 0 2 1 0
5 18.88 0 0 0 8 16 19 10 1 0 4 15
6 15.58 0 0 0 1 2 8 44 8 7 1 0
7 13.55 0 0 0 1 0 0 7 29 10 0 4
8 11.66 0 0 0 1 1 1 | 9 42 2 0
9 10.31 0 0 0 0 0 0 0 0 8 30 11
10 9.21 0 0 0 1 1 0 1 1 1 19 16
by an element g of Sy by a least-squares fit in some 4. Results

appropriate norm. If the norm comes from an inner
product then the resulting approximation,

N
g(p) = 2 gxi(p), (3.12)

=0
to f can be computed from the linear system
N

z (Xi’ XI)gJ = (.f; Xi)a

Jj=0

(i=0,...,N), (3.13)

where ( , ) denotes the inner product chosen. For
the results presented here we use the Chebyshev inner
product

1
B (—1—% ds, (3.14)

since the resulting fit is essentially uniform, i.e., it
nearly minimizes the maximum pointwise error | f(p)
— g(p)| (Rivlin, 1969). The linear system (3.13) is
solved using the Cholesky decomposition, using
Gauss-Chebyshev quadrature to evaluate the inner
product (3.14). The calculations described in this
section have been implemented in a set of FORTRAN
77 routines which are available from the authors.

(u,v) =

In this section we present solutions of the vertical
structure problem obtained by the method of Section
3 and apply the vertical transform to observed tropical
forcing profiles.

a. Solutions and accuracy

The accuracy of the Rayleigh-Ritz method may be
illustrated by comparing the numerical solutions ¢,,
V¥, to the true solutions ¢,, ¥, for a case which can
be solved analytically. Here we consider the case p?o
= RT = constant, for which (2.12) may be solved
easily in log pressure coordinates (e.g., Fulton and
Schubert, 1980). Figure 1 shows the relative error
|G, — cul/c, in the phase speeds as a function of the
truncation N for various vertical modes n; Fig. 2
shows the corresponding error ¥,, — ¥, in the vertical
structure functions measured in the vertical norm
-1l = (-, « )" The values ps = 1010 mb, p; = 100
mb, I' = 23.79 K and 7(pg) = 29.38°C have been
assumed. The exponential convergence of the method
is clearly evident; for example, increasing N by 2
gives an order of magnitude improvement in ¢, and
increasing N by 3 gives an order of magnitude

TABLE 2. As in Table 1 but for 11 standard levels with pr = 100 mb.

m
Cn
n (ms™) 0 1 2 3 4 5 6 7 8 9 10
0 286.87 100 0 0 0 0 0 1 6 0 6 19
1 51.61 0 100 0 0 0 2 3 4 17 10 6
2 28.85 0 0 106 0 1 5 8 15 35 27 16
3 20.58 0 0 0 107 1 1 3 14 0 13 29
4 15.23 0 0 0 0 100 1 0 0 10 0 6
5 12.34 0 0 0 0 0 91 0 0 1 1 3
6 10.22 0 0 0 0 0 2 65 1 20 0 1
7 8.74 0 0 0 0 1 2 7 18 1 13 28
8 7.64 0 0 0 0 0 4 5 2 12 2 1
9 6.80 0 0 0 0 0 1 2 4 3 36 0
10 6.12 0 0 0 0 0 0 0 3 0 1 13




654

improvement in ¥,. Machine accuracy for & is
reached near N = 24 and roundoff error affects the
solutions somewhat for larger N. The dashed curves
indicate that for modes » = 0, . .., N/2 the eigenvalues
and eigenfunctions have relative errors at most about
0.5-1.0 and 10-20%, respectively. From this point
on, only numerical solutions will be considered (N
= 32 unless otherwise specified) and hence the tildes
on ¢, and ¥, will be dropped.

A constant T' atmosphere is only a first approxi-
mation to reality. In the tropics I' typically varies
from about 40 K in the lower troposphere (~800
mb), with lower values near the surface, to about 10
K in the upper troposphere (~250 mb), with much
higher values in the stratosphere. Figure 3 shows the
first four vertical structure functions for the GATE
temperature sounding of Table 4; phase speeds for
the higher modes appear in Table 5. Comparison
with solutions for much larger N indicates that the
convergence of ¢, and ¥, for this basic state is
exponential but slower than for the constant I' case
considered above. The mode # = 0 is referred to as
the external mode since it has no zeros (nodes)
internal to the atmosphere; the modes n = 1,2, - -«
are referred to as internal modes, with mode » having
n zeros internal to the atmosphere.

b. Sampling and aliasing

Measuring an atmospheric variable such as wind
or geopotential amounts to sampling a continuous
function of pressure at discrete levels, which inherently
limits the amount of vertical structure which can be
resolved by the data. To examine the effects of this
sampling we evaluated the vertical structure functions
¥,.(p) at various discrete levels and then projected
this “data” back onto the vertical modes. The results
of these calculations are presented in Tables 1-3,
which give the energy per mode (square of the
spectral coefficient) as a percentage of the input
energy 1.
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For Table 1, 12 standard levels [denoted by (s) in
Table 4] from the surface pz = 1010 mb to the top
pr = 50 mb were used. These levels do not give
enough resolution in the upper troposphere and
stratosphere to adequately represent ¥,, for m 2 4.
This leads to significant aliasing; i.e., ¥,, for larger m
projects a significant amount of energy onto the lower
modes, especially the first internal mode. This aliasing
is reduced somewhat by placing the top at pr = 100
mb as in Table 2, since this eliminates the stratosphere
where the vertical structure functions are highly os-
cillatory. Still better results are obtained by sampling
at levels equally spaced in log pressure as in Table 3.
This spacing is suggested by the fact that the zeros of
the vertical structure functions are equally spaced in
log pressure when I' is constant; when I' is not
constant, they are equally spaced (for the higher
modes) in x = {7 (RT")"*(dp/p) (Courant and Hilbert,
1953, p. 337), which is nearly proportional to log
pressure. These results indicate that without a careful
choice of sampling levels, aliasing may give misleading
information about the vertical modes present in
observational data. Since the various modes differ
significantly in their dynamics due to their different
phase speeds (and, hence, different Rossby radii), this
effect may influence any conclusions drawn from the
data.

c¢. Application to tropical data

Vertical transforms of global data have been com-
puted by Kasahara and Puri (1981) using the normal
modes of a numerical model. Here we use the method
described in Section 3 to transform observed tropical

" forcing profiles. The data for this application was

provided by M. Yanai (personal communication,
1984) and is given in Table 4. It consists of two data
sets: Marshall Islands and GATE. In addition to a
mean temperature profile, each data set consists of
time mean profiles of apparent heat source

TABLE 3. As in Table 1 but for 12 levels equally spaced in log(p).

m
Cn
n (m 57" 0 1 2 3 4 5 6 7 8 9 10
0 296.17 100 0 0 0 0 0 0 0 0 0 0
1 75.80 0 100 0 0 0 0 0 0 1 1 3
2 47.02 0 0 100 0 0 0 0 0 0 1 1
3 30.56 0 0 0 100 0 0 0 0 1 3 6
4 22.92 0 0 0 0 99 0 0 1 1 5 4
5 18.88 -0 0 0 0 0 99 0 1 6 9 17
6 15.58 0 0 0 0 0 0 101 2 5 16 5
7 13.55 0 0 0 0 0 0 0 109 5 1 4
8 11.66 0 0 0 0 0 0 0 0 66 1 10
9 10.31 0 0 0 0 0 0 0 2 12 19 6
10 9.21 0 0 0 0 0 0 0 2 13 14 39
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TABLE 4. Physical space profiles of T (°C), @, (°C day™') and Z (107! 572) as functions of p (mb)
(s denotes the standard levels used in Section 4b).
Marshall Islands mean GATE mean GATE disturbed GATE undisturbed
p T O Zz T O z O VA O Z
50(s) —60.63 0.00 0.00 —-62.22 0.00 0.00 0.00 0.00 0.00 0.00
100(s) -73.42 1.46 8.98 —75.46 0.12 —-0.45 0.08 —2.62 0.15 0.79
150(s) —68.51 2.65 9.12 —69.07 —-0.53 0.40 —0.67 3.61 —-0.44 —1.44
200(s) -55.42 2.54 6.74 —-56.00 -0.77 4.10 —-0.02 11.35 —-1.26 —-0.07
250(s) -43.37 2.85 4.10 -43.76 0.40 3.20 1.81 8.27 -0.55 0.27
300(s) —33.22 4.29 2.51 —33.33 1.84 —1.19 3.90 —4.02 0.46 0.43
350 —24.32 5.38 1.92 —24.85 2.719 —-6.72 5.26 -14.19 1.15 ~2.42
400(s) —17.66 6.01 2.04 —17.89 2.98 —7.68 5.44 ~13.87 1.34 —4.11
450 -11.73 6.39 3.14 —12.08 3.09 —-3.77 5.26 —-7.49 1.64 —1.62
500(s) —-6.71 6.42 4.09 ~7.34 3.54 0.44 5.48 -2.86 2.24 2.34
550 —-2.25 6.17 2.70 -3.28 4.04 1.96 5.92 —1.82 2.78 4.13
600 - 1.68 5.60 0.68 0.39 4.18 1.48 6.05 —1.60 2.93 3.25
650 5.40 4.73 0.81 3.98 3.94 0.61 5.65 -1.15 2.80 1.63
700(s) 8.78 4.07 3.56 7.55 3.68 0.72 5.20 0.04 2.66 1.11
750 11.75 3713 5.03 10.78 3.59 2.25 494 3.49 2.69 1.55
800 14.41 3.33 3.44 13.54 3.61 3.33 4.75 5.26 2.84 2.22
850(s) 16.90 2.66 Y 1.20 15.96 3.37 1.39 4.25 2.95 2.78 0.48
900 19.69 1.80 —1.81 18.42 2.55 —-3.99 3.17 -2.50 2.14 —4.85
950 22.75 0.93 —-5.24 21.28 1.17 —-9.02 1.35 —8.89 1.05 -9.09
1000(s) 26.08 0.12 —6.94 24.60 .08 —10.32 —-0.03 —-12.10 0.16 —9.29
1010(s) 26.78 0.00 —7.00 25.30 0.00 —10.36 0.00 -12.20 0.00 -9.30
oT 0T RT quite active. An interesting overall difference between
0=0Qi=¢ [ o +v-VT+ “’(5 - _I;Z_):I (4.1)  the Q, and Z profiles is the more complicated vertical
/4

and apparent vorticity source
k-VXF=2Z

a; av

= =4+ V- [({+fIV] +k-V X (“’ap)’ (4.2)
where { = k-V X v and the overbar now denotes a
horizontal average. The mean Marshall Islands profiles
result from averaging 383 analysis times and have
been used in the studies of Yanai et al. (1973), Yanai
et al. (1976) and Chu et al. (1981). The mean GATE
profiles result from averaging 145 analysis times and
are a by-product of the study of Sui and Yanai
(1984)'. In addition, the GATE data has been parti-
tioned into disturbed (53 analysis times) and undis-
turbed (92 analysis times) situations based on satellite-
derived upper-level cloudiness.

The profiles of Q; and Z for the Marshall Islands
and GATE are displayed in Fig. 4. In terms of Q,
the GATE region is less active in the mean than the
Marshall Islands region. In fact, the Marshall Islands
mean Q; closely resembles the GATE disturbed Q.
However, in terms of Z, the GATE region seems

' The data used by Sui and Yanai (1984) are in turn based on
the upper-air objective wind analysis of K. Ooyama and J. H. Chu
(see Esbensen et al., 1982, for a brief description) and the objective
thermodynamic analysis of Esbensen and Ooyama (1983).

structures associated with Z. This difference is im-
portant in determining which vertical modes are
excited by the two apparent sources.

The spectral space representations (with N = 32
and pr = 50 mb) of the apparent heat and vorticity
sources are given in Table 5. We have also constructed
similar tables (not shown) for different truncations N
(e.g. N = 8, 16) and different model tops (e.g., pr
= 25, 100 mb); the differences with Table 5 are rather
small as long as one views the spectral representation
in terms of the phase speed c¢ rather than the mode
index n. Perhaps the most striking feature of Table 5
is the difference in the width of the spectra for Q,
and Z, with Q; being projected primarily onto the
narrow range 30 < ¢ < 300 m s™! and Z onto the
broad range 7 < ¢ < 300 m s~

According to geostrophic adjustment theory, for a
given latitude and horizontal scale, the atmospheric
response to given normalized vertical modes of ap-
parent heat source becomes smaller as the Rossby
radius c¢,/f increases. Conversely, the atmospheric
response to given normalized vertical modes of ap-
parent vorticity source becomes smaller as c,/f de-
creases. Thus, if the spectra of @, and Z were flat,
the atmosphere would respond more to the high-
order modes of Q; and the low-order modes of Z.
However, since Q, projects so strongly on the low-
order modes (see Table 5), most of the atmospheric
response to heating should be in these same low-
order modes. Since Z projects onto such a broad
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FIG. 4. Vertical profiles of the apparent heat source Q; and the
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GATE (b).
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range of c,, the atmosphere tends to respond to the
low-order modes of Z. Since the horizontal scale of
a typical cloud cluster is usually small compared to
calf for low-order modes, the atmospheric response
to Z is “efficient” while the atmospheric response to
0, is “inefficient.” However, to determine which
apparent source actually yields the larger atmospheric
response, one must compare the rates at which the
two sources operate. This comparison is outside the
scope of this study.

With the data at hand the generation of kinetic
and available potential energy can not be determined,
as they involve products of forcing terms with per-
turbation fields which are not known. Nevertheless,
we can compute the quantity (®,/c)* which is shown
in Fig. 5 as a function of the phase speed c. If the
time scale of the heating is short enough for it 10 be
regarded as impulsive, then the curves in Fig. 5 give
the relative distribution of initial available potential
energy for the given Q, profiles. The sharp spectral
peak then gives some justification for studies such as
those of Gill (1980) and Silva Dias et al. (1983) which
use equatorial @-plane shallow water models with ¢
~ 50 m s~!. This discussion complements that of

" Geisler and Stevens (1982) which considered the
projection of an idealized heating profile onto the
normal modes of an atmosphere with constant static
-stability. :

5. Concluding remarks

The theory of vertical normal mode transforms
has been reviewed. A variational formulation which

TABLE 5. Spectral space profiles of ¢, (m s™*), 3®,/6¢ (m? s~ day™") and Z, (10™!! 572) as functions of the vertical mode index n.

Marshall Islands mean

GATE mean GATE disturbed GATE undistarbed

n Cn [0%,/01] 1Z Cn 1%/t 1Z, 0&,/1] 1Z, lo&,/0t] VA
0 296.66 967 2.617 296.17 614 1.002 948 1.758 391 0.566
1 77.22 562 1.046 75.80 199 0.451 376 0.722 81 0.294
2 46.66 541 2.208 47.02 311 0.478 . 514 0.579 175 0.419
3 31.07 55 0.553 30.56 95 0.098 116 0.747 81 0.277
4 23.36 31 0.138 22.92 43 0.117 18 2.353 59 1.171
5 18.91 11 1.096 18.88 1 0.899 9 0.108 8 1.479
6 15.72 11 1.089 15.58 9 2.293 23 3.576 1 1.555
7 13.53 9 0.606 13.55 22 2.076 37 3.354 12 1.340
8 11.67 2 0.298 11.66 13 0.484 13 0.036 13 0.784
9 10.31 1 0.517 10.31 3 0.445 10 1.318 2 0.058
10 9.20 1 0.931 9.21 7 0.059 10 0.462 5 0.172
11 8.14 1 1.205 8.14 3 1.492 5 2.802 2 0.737
12 7.22 4 0.898 7.22 6 1.486 5 1.790 6 1.310
13 6.40 2 0.567 6.41 1 0.634 1 0.312 1 0.816
14 5.72 0 0.133 5.73 2 0.606 3 0.888 1 0.443
15 5.16 1 0.024 5.16 2 0.498 2 0.769 2 0.341
16 4.68 0 0.086 4.68 0 0.309 0 0.243 0 0.346
17 427 1 0.175 4.27 1 0.155 2 0.326 1 0.056
18 3.92 0 0.199 392 0 0.111 0 0.103 0 0.113
19 3.61 0 0.172 3.62 0 0.064 0 0.135 0 0.024
20 3.34 1 0.197 3.33 0 0.055 0 0.187 0 0.021
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is closely connected with the energetics of the atmo-
sphere leads to the Rayleigh-Ritz method for imple-
menting the transform in practice. With polynomial
basis functions this method gives solutions with ex-
ponential order of accuracy. Transforms of observed
tropical forcing profiles show that the forcing of the
mass field occurs primarily for vertical modes with
phase speeds in the range 30-300 m s™}, while signif-
icant forcing of the wind field occurs for phase speeds
as low as 7-8 m s!. Sensitivity studies indicate that
spectral space profiles in terms of the phase speed ¢
are relatively independent of the truncation N and
the assumed top pressure prused, but that significant
aliasing onto the first few modes can occur if the
physical space profile is not sampled at optimum
levels.

When the top of the model atmosphere is placed
at pr = 0 the governing equations become singular
there. Depending on the basic state 7{p), the spectrum
of phase speeds may then become partly continuous
(e.g. Eckart, 1960, Chap. 6; Jacobs and Wiin-Nielsen,
1966). The sum over discrete modes must then be
replaced by an integral over the continuous spectrum,
in much the same way that the Fourier series of a
function approaches its Fourier transform in the limit
as the period of the function approaches infinity. For
the atmosphere, the distinguishing characteristic be-
tween a discrete and continuous spectrum appears to
be whether the basic state temperature vanishes or
approaches a finite limit at the top of the atmosphere.
We are presently investigating the theory and imple-
mentation of such continuous vertical normal-mode
transforms.
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