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ABSTRACT

A three-layer, primitive equation tropical cyclone model is used to test the effect of nonlinear normal
mode initialization (NNMI) in a tropical cyclone simulation. The model is solved using a spectral method
with normal mode basis functions. Results from a six-day tropical cyclone simulation are used as initial data
to test the NNML. It is shown that Machenhauer’s NNMI scheme converges rapidly under tropical cyclone
conditions when the dissipative and convective terms are not included in the nonlinear forcing (adiabatic
initialization). When these terms are included (diabatic initialization), Machenhauer’s scheme no longer
converges, but can still reduce the initial gravity mode time tendencies to an acceptable level. The radial
winds produced by the diabatic initialization are qualitatively similar to those in the control simulation, but
the positioning of the convective heating with respect to the radius of maximum wind is somewhat different.
Because of this, the errors in the storm intensity using the control simuiation as a perfect forecast are about
the same for the adiabatic and diabatic initializations. This indicates that the usefulness of the standard
Machenhauer initialization in tropical cyclone models may be limited. The diabatic initialization scheme
used in the ECMWF operational model is also tested. For this case, the time-averaged diabatic forcing is
determined from a short model run and then held fixed during the iteration. For this case, the diabatic
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initialization converges and produces a radial wind field consistent with the control simulation.

1. Introduction

Much progress has been made in the initialization
of primitive equation models since the introduction
of nonlinear mode initialization (NNMI) techniques
by Machenhauer (1977) and Baer and Tribbia (1977).
These techniques are based on the fact that the
normal modes of the linearized primitive equations

"in spherical geometry can be classified as gravity-

inertia or Rossby waves. The basic idea of NNMI is
to project the initial data onto the normal modes of
the linearized equations. The amplitudes of the grav-
ity-inertia waves are then adjusted so that their initial

time tendencies (rather than the amplitudes them-

selves) are zero. This eliminates spurious gravity wave
oscillations which might result from unbalanced initial
pressure and wind data.

Machenhauer (1977) and Baer and Tribbia (1977)
demonstrated the effectiveness of NNMI in shallow
water equation models. These results were generalized
to baroclinic models by Andersen (1977) and Daley
(1979). An attractive feature of NNMI is that, in
principle, it is possible to include physical processes
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such as dissipation and convective heating in the
initialization procedure. For example, Williamson
and Temperton (1981) have shown that when surface
friction was included in a multilevel grid point model,
NNMI produced cross-isobar flow in the lower levels.

Although NNMI has many advantages, it also has
some difficulties. Williamson and Temperton (1981)
have shown that the iterative procedure introduced
by Machenhauer (1977) does not converge when
convective heating is included in the nonlinear forcing.
Tribbia (1981) has shown that geopotential height
constrained initialization (where the gravity wave
amplitudes are determined in such a way that the
geopotential height field is not changed) fails in
regions where the ellipticity condition for the standard
nonlinear balance equation is violated. In addition,
Ballish (1981) and Errico (1983) have shown that
Machenhauer’s procedure will diverge in regions where
the advective wind speed exceeds the phase speed of
the gravity waves. This may present a problem for
the initialization of higher internal gravity modes
with relatively small phase speeds.

Despite the above difficulties, NNMI schemes have
been applied in a number of global prediction models
(e.g., Daley, 1979; Puri and Bourke, 1982). Kitade
(1983) has suggested a modification to Machenhauer’s
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iterative procedure which appears to improve the
convergence properties of the scheme. Kitade presents
several examples of the initialization of a global
spectral model which includes dissipative processes
and convective heating. These results show that the
initialized fields contain reasonable divergent winds
when the convective heating is included in the non-
linear forcing.

Although NNMI techniques were originally devel-
oped for global prediction problems, they have recently

been applied to limited area models by Briere (1982).

and Bourke and McGregor (1983). Results from these
studies show that many of the results of NNMI for
global models also apply for limited area models.
This suggests that NNMI techniques may also be
useful in tropical cyclone models. As summarized by
Elsberry (1979), nearly all operational tropical cyclone
models are initialized using the nonlinear balance
equation. In some cases, the storm-scale circulation
is modified by adding specified tangential and radial
wind components. Using these techniques, it is ex-
tremely difficult to obtain a consistent divergent wind
component. The use of NNMI with physical processes
included in the nonlinear forcing may then remove
this difficulty.

Hoke and Anthes (1977) have shown that dynamic
initialization can be used in operational tropical
cyclone models, although it is computationally ex-
pensive. Williamson and Temperton (1981) have
shown that in a global model, NNMI requires much
less computational effort than dynamic initialization,
once the model normal modes are determined. The
purpose of this paper is to investigate the effect of
NNMI in a tropical cyclone model. Because the aim
of this work is to study NNMIl.rather than to simulate
all the details of tropical cyclone formation, a physical
model with maximum simplification was chosen. The
model used here is based on that of Ooyama (1969a,b),
and has the simplest geometry ( f~plane, axisymmetric)
and the minimum . vertical resolution (three layers)
needed to simulate a tropical cyclone. In addition,
Ooyama’s model has a relatively simple cumulus
parameterization scheme that can still reproduce many
aspects of tropical cyclones. A detailed description of
the model is given in Schubert and DeMaria (1985,
henceforth referred to as Part I).

In Section 2, the governing equations and spectral
“solution of the model are briefly summarized. The
cumulus parameterization and the application of
NNMI are also discussed in this section. In Section
3, a tropical cyclone simulation is presented which
will be used as a control run to test the NNMIL In
Sections 4 and 5, Machenhauer’s initialization scheme
is applied to the control simulation with and without
cumulus parameterization terms included in the non-
linear forcing, and the initialized fields are compared
with the control simulation. The impact of the ini-
tialization is assessed .in Section 6 by comparing
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model runs with the initialized fields to the control
simulation.

2. Governing equations(

As described in Part I, the large-scale atmosphere
is treated as three axisymmetric incompressible ho-
mogeneous fluid layers. The layers have densities p;
0, 1, 2 and ¢ = 1) with py > p, > p, and
thicknesses H; + hy(r, t), where the constants H; are
the undlsturbed thxcknesses at large radii.

The fluid system used here is slightly more general
than that of Qoyama (1969a), who assumed the
lowest layer had a constant thickness (/iy(r, t) = 0)
and that po = p,. These assumptions are relaxed in
this study because they have a large effect on the
normal modes of the model. DeMaria and Schubert
(1984) have derived the normal modes for the incom-
pressible fluid system described here with . the as-

‘sumptions that i, = 0 and pg = p; in a model with

Cartesian geometry on a mid-latitude B-plane. The
normal modes are determined by first finding the
vertical normal modes of the linearized equations.
Then for each vertical mode, there is a set of equations
for the horizontal structure. For the three-layer in-
compressible fluid system there are three vertical
modes. For two of the vertical modes, the horizontal
structure equations are analogous to shallow water
equations, so that the normal modes can be classified
as gravity-inertia or Rossby waves. However, when
ho = 0 and py = p,, the horizontal structure equations
for the third vertical mode simply describe inertial
oscillations. This does not present a problem for the
integration of the model, but does affect NNMI. This
is because the velocity field in the boundary layer is
largely represented by this third vertical mode. As
described in DeMaria and Schubert, this vertical
mode cannot be initialized using Machenhauer’s pro-
cedure, since the frequencies of the inertial oscillations
are relatively. slow compared to the gravity wave .
frequencies of the other vertical modes. Because of
this, the initialization scheme cannot produce bound-
ary layer convergence for this case. Since the convec-
tive heating is parameterized in terms of the boundary
layer convergence, as will be discussed later, the
application of NNMI does not interact with the
parameterization scheme. Thus, to investigate the
effect of NNMI for the case when the cumulus
parameterization is involved, the assumptions that 4,
= 0 and pg = p; must be relaxed.,

The governing equations for the incompressible
fluid system can be written as

6¢,

—fo, + 2.1)
v,
= 2.2)
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ot +H or % 2.3)
¢ = glho + ety + hy) (2.4)
¢y = g(ho + hy + ? hz) (2.5)
1
¢ = g(ho + hy + hy) (2.6)

where ; is the radial wind of layer j, v; the tangential
wind of layer j, and f;, g, and g; contain all the
nonlinear and forcing terms as defined in Part L

The terms f;, g; and g; also contain second- and
fourth-order linear diffusion terms, which were not
described in Part 1. The second-order diffusion terms
were included for consistency with Ooyama’s original
model, and the diffusion coefficient is 10° m? s
The fourth-order diffusion terms (with a diffusion
coefficient of 5 X 102 m* s7') were added for
computational reasons. When (2.1)-(2.3) are solved
using a spectral method, there is a tendency for the
energy of the highest wavenumber modes to become
too large. As discussed by Machenhauer (1979), this
“spectral blocking” phenomenon can be controlled
by the scale-selective diffusion used here. The “spectral
blocking™ could also have been controlled by making
the second-order diffusion coefficient larger. However,
the use of a second-order diffusion coefficient large
enough to control the blocking resulted in too large
a damping of the lower wavenumber modes. Thus, a
more scale-selective diffusion was needed.

Diabatic effects are included in the incompressible
fluid system by allowing mass to move between layers
of different density. In this study, fluid can be trans-
ported from layer 1 to layer 2 (Q3,), from layer O to
layer 1 (Qf;;) and from layer 1 to layer 0 (Qj)).
Following Ooyama (1969a), the diabatic term Q3
which represents the effects of cumulus convection is
given by
aw if w>0

0 if w<O,

where w is the vertically-integrated boundary layer
convergence given by

Q52={ 2.7

1 d(ruy)
= —(Hop+ ho) = ——. :
w=—(Ho + ho) ~ pw (2.8)
The proportionality factor 5 in (2.7) is given by
X2~ Xy

where x; is the equivalent potential temperature
deviation of layer j. In Ooyama’s original formulation,
Xo 1s obtained from a prognostic conservation equa-
tion, x; is set to a constant and ¥, is diagnosed from
the thickness of the upper fluid layer. For simplicity,
both x, and x; will be set to constant values of 20 K
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and —10 K, respectively, which correspond to equiv-
alent potential temperatures of 360 K and 330 K.
Following Ooyama, x; is given by

&Y €
=211 -2
X2 c ( e,)h2

14

(2.10)

where ¢, is the specific heat at constant pressure and
the nondimensional parameter v has a value of about
10.0. Equation (2.10) is derived using an analogy
with a compressible fluid and simulates the effect of
upper-level warming on the convection.

As discussed previously, Ooyama assumed that
layer 0 had a constant thickness and po = p;. This
implies that the mass divergence in layer O is com-
pensated by a vertical mass flux between layers 0 and
1. When these assumptions are relaxed, mass diver-
gence in layer O results in a change in the thickness
of this layer. In regions of boundary layer convergence,
the thickness of this layer became unrealistically
large, while in regions of boundary layer divergence,
the thickness of the layer decreased to zero, and
resulted in a numerical instability. To avoid this
difficulty, the mass divergence in the boundary layer
was compensated by a mass flux between layers 0O
and 1. Thus, :
if w>0

w
‘= 2.11
Qm_{o if w<0 @10
0 if w=0
QM={ , .12)
w if w<O. )

The parameters H; and ¢ were determined as
described in Part 1. In this study, Hy = 737 m, H,
= 4206 m, H, = 3835 m, ¢ = 0.8758 and ¢
= 0.7683. With these values of H; and ¢;, the pure
gravity wave speeds for the three vertical modes are
287, 52 and 28 m s~!, and the fractions of the basic
state total column mass in layers 0, 1, and 2 are Yo,
%o and ¥, respectively.

The governing equations (2.1)-(2.3) were solved
using a spectral method where the normal modes of
the linearized equations (f; = g; = ¢q; = 0) were used
as basis functions, as described in Part 1.

The first step is to transform (2.1)-(2.3) in the
vertical so that the dependent variables are amplitudes
of vertical normal modes. When this is done, the
governing equations for each vertical mode are of the
form of shallow water equations with pure gravity
wave speed ¢,,, where m = 0, 1 or 2 is the vertical
mode number. As discussed previously, ¢, takes the
value of 287, 52 or 28 m s™! for m = 0, 1, or 2.

The next step is to expand the vertically transformed
dependent variables in a series of the eigenfunctions
of the horizontal linear operator which appears in the
vertically transformed governing equations. As de-
scribed in Part I, these eigenfunctions can be written
as three-component vectors, where each component
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is either a zero- or first-order Bessel function of the
first kind. S

Once the horizontal transform is applied, the gov-
erning equations become

d Wmns
dt

where W, 1s a normal mode amplitude, »,,,; a
normal mode frequency and N, the amplitude of
the normal mode projection of the nonlinear and
forcing terms. The normal mode frequencies are
given by '

+ WiinsWinns = Nons (2.13)

0, s=0 (geoétrophic modes)
_ _(f2 + szkfnn)llza s=1
Ymns = 3 24 oM 5= 2 (2.14)
(gravity-inertia modes)

where k,,, (n = 1, 2, - « -) are discrete wavenumibers
determined by application of the lateral boundary
condition at r = a.-Equation (2.13) is the normal
mode form. of the original governing equations where
W,.ns represents the amplitudes of the geostrophic
modes {s = 0) or gravity modes (s = 1, 2).

Equation (2.13) was solved using second-order
Adams-Bashforth time differencing with an initial
forward time step. In all of the simulations in the
following sections, the horizontal series was truncated
at N = 64 with a = 800 km. The nonlinear terms
N,..s were calculated using the transform method
(Orszag, 1970; Eliasen et al, 1970) using 3N + 1
evenly spaced grid points. With a = 800 km, the
spacing of the transform grid is then about 4 km.

When the governing equations are written in nor-
mal mode form as in (2.13) the application of the
NNMI scheme proposed by Machenhauer (1977) is
straightforward. The first step is to divide W, into
a slow mode (low frequency) part and a fast mode
(high frequency) part. With the simple f-plane ge-
ometry used here, the geostrophic modes (s = 0) can
be considered the slow modes and the gravity modes
(s = 1, 2) the fast modes. Then for Machenhauer’s
initialization scheme, the amplitudes of the slow
modes are not changed, while the amplitudes of the
fast modes are determined by assuming that dW,,,,/
dt is small enough so that (2.13) becomes

i
Wons = — ——

Ymns

Nowms, s=1,2. (2.15)

Since N, in (2.15) is a nonlinear function of W,
this equation is-solved using an iterative procedure
described by

i

Wb =—— NO. s=1,2, (2.16)

Vmns

where the superscript r is the iteration number. In all
_of the results to be presented, W,,,,; for s = 1, 2 was
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set t0 zero before the iteration scheme (2.16) was
applied.

As discussed in Section 1, there are many cases
where (2.16) does not converge. Kitade (1983) has
suggested a modification to (2.16) given by

Wb = (1 — )W — — Nihs  (2.17)
: Vmns
where w can be interpreted as an under-relaxation
parameter. In all of the subsequent discussion, (2.17)
will be referred to as the K-scheme while (2.16) will
be referred to as the M-scheme. When w = 1 in
(2.17), the K-scheme is equivalent to the M-scheme.
Kitade used a value of w = 0.5. ,
In addition to the inclusion of an under-relaxation
parameter in the iterative scheme, Kitade used a 48-
hour period cutoff. That is, only the modes with
periods shorter than 48 hours were initialized. In the
axisymmetric model, only the gravity modes are
initialized. Since the “slowest” gravity mode in the
model has a period of about 16 hours, the initialization
scheme used here is consistent with Kitade’s.

3. Control simulation

In this section, a tropical cyclone simulation using
the spectral model described previously is presented.
The results from this simulation will be used as a
control to test the effect of the NNMI. The initial
mass and wind fields for this simulation are given by

=0 j=0,1,2 (3.1

T e

0, , j=2

v = (3.2)

_2vm2[1 + (r/rm)Z]-l + forl'm
X In[1 + (r/rm)z], j=0,1 (3.3)
0, ' j=2

where the maximum tangential wind v,, = 6.0 m s~
at a radius r,, = 60 km. The initial condition defined
by (3.1)-(3.3) is a weak axisymmetric vortex in
gradient wind balance with no initial radial circulation.

In the incompressible fluid system, the deviation
from the mean surface pressure is given by -

P, = pg(ho + €1hy + &2h2) = péq. (34)

Figure 1 shows the time evolution of P; (assuming p
= 1.0 kg m™3) and the maximum layer | tangential
wind for the control simulation, This figure shows
that the initial vortex slowly develops during the first
48 hours of the simulation. Between 48 and 96 hours,
the vortex intensifies more rapidly and reaches hur-
ricane strength (v; = 33 m s™') by about 60 hours.
After 96 hours, the intensity of the vortex slowly
decreases.

;=

1
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FIG. 1. The time evolution of the minimum surface pressure
deviation (P;) and maximum layer 1 wind speed and the time
evolution of the radius of maximum wind and radii of hurricane
wind for the control simulation.
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The lower portion of Fig. 1 shows the radius of
maximum tangential wind and the radii of hurricane
force wind (v, = 33 m s™!). During the first 24 hours,
the radius of maximum wind expands to about 80
km. During the next 48 hours, it contracts to less
than 40 km and then slowly expands after this time.
By 96 hours, the model has produced a mature
tropical cyclone with a minimum surface pressure of
about 960 mb (asuming a mean surface pressure of
1010 mb) with a maximum tangential wind of 52 m
s~! at a radius of 40 km. These values are consistent
with observations from the inner regions of tropical
cyclones presented by Shea and Gray (1973).

Figure 2 shows the radial structure of u;, v;, and
¢; at 48 and 96 hours. This figure shows that the
radial circulation is characterized by strong boundary
layer inflow, weaker inflow in layer 1 and outflow in
layer 2. The tangential circulation is cyclonic in all
the layers in the inner regions of the storm (r < 200
km) with an anticyclone in layer 2 in the outer
regions.

10 | E— T L T
<
£
2
P r Vi t=96 h .
- 0 o
3 v2
> . . ' -
0 \—
L -
1 1 J
T I i
'y
o A
x
™~ -
L
E 1
- t=96 h -
-60 1 L 1 1
(o] 100 200 300 400 500
r (km)

FIG. 2. The radial and tangential winds and geopotential (x, v and ¢) for layers 0, 1 and 2 as a function of radius
for the control simulation at ¢ = 48 hours and ¢ = 96 hours.
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- Figure 3 shows the nondimensional absolute vor-

ticity Z; defined by
o[22

for layers 1 and 2 at 48 and 96 hours. This figure
shows that by 48 hours, a region of negative absolute
vorticity (Z; < 0) has formed in layer 2. By 96 hours,

(3.5)

the region of negative absolute vorticity in layer 2.

has increased in size and a small region also exists in
layer 1.

As discussed in Section 1, Tribbia (1981) has
shown -that geopotential height constrained NNMI
will fail in regions where the ellipticity condition for
the nonlinear balance equation is violated. .In the
axisymmetric model, non-elliptic regions can be in-
terpreted in terms of the gradient wind equation.
When 3¢/dr is _less than a critical value (d¢/dr),, it is
no longer possible to find a tangential wind which
satisfies the gradient wind equation. It is straightfor-
ward to show that (d¢/dr),. is given by

)5

so that the criterion for obtaining gradient balanced
winds is given by

(3.6)

o 2y
5; = —fT . 3.7

Taking (f1)~'8(r)/dr of (3.7) gives

148 (9(15) 1 - f
=-V=—-= 3.8)
frar( f ¢ 2 (-8
6 ] T T ——
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sl - |\ 4
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2 r— ~
] \//
2; —2 L 1 1 PR
N T T T T
N 1=96 hrs.
4 - Zl ‘J
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2 1 | R T
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rikm)

FIG. 3. The nondimensional absolute vorticity (Z) for layers 1
and 2 as a function of radius for the control 51mulauon at¢ = 48
hours and ¢ = 96 hours.
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which is the standard ellipticity condition for the
nonlinear balance equation.

Figure 4 shows d¢/dr and (d¢/dr), as a function of
radius for layer 2 at 48 and 96 hours. This figure
shows that at these times, d¢/dr always exceeds (d¢/
dr). so that it would be possible to obtain balanced
winds from the geopotential. This condition is also
satisfied in layers 0 and 1, since 9¢/dr is always
positive as can be seen in Fig. 2.

As described in Section 2, the NNMI procedure
assumes that the dW,,/dt term in (2.13) is small
compared to the other two terms. The convergence
of the iterative scheme used in the NNMI can be
evaluated by calculating the parameter Bg given by

-3 5 5 |

(3.9

Note that the summation in the above equation is
for the gravity modes only since s = 1, 2. For
comparison with Bg, the sum of the square of the
second term in (2.13) can also be calculated for the
gravity modes using

2

Z

Vrznnsl Wmnslz- (3‘ 10)

an
MN

s=1

Figure 5 shows the time evolution of B; and A4g
for the control simulation, This figure shows that
during most of the simulation, A; is more than two
orders of magnitude larger than B;. This suggests
that during the model simulation the first term in
(2.13) remains fairly small compared to the second
term. This indicates that the gravity mode amplitudes
obtained by the NNMI should be a good approxi-
mation to those obtained from the control simulation.

Leith (1980) introduced the slow manifold which
is defined as the set of model states which are evolving
slowly in time. NNMI can then be interpreted as
adjusting the initial model state so that it is as close
as possible to the slow manifold. In the initialization
experiments in the following sections, it is assumed
that the model state during the control simulation is
close to the slow manifold. The model state is then
moved off the slow manifold by setting the gravity
mode amplitudes to zero. It is then possible to
determine if the M-scheme (2.16) or the K-scheme
(2.17) is capable of moving the model state back
towards the slow manifold by comparing the initialized
model results to the uninitialized control simulation.

The results from the control simulation suggest
that with an initial condition of a weak vortex in
gradient balance, the model state remains close to
the slow manifold. In the axisymmetric model, the
radial wind projects entirely onto the gravity modes,
while the tangential wind projects almost entirely
onto the geostrophic modes. This was verified by
constructing u; and v; from the spectral amplitudes
W.,..s With either the gravity or geostrophic modes set
to zero. Thus, the time evolutions of the radial and
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FIG. 4. The radial gradient of the layer 2 geopotential (3¢,/dr)
as a function of radius for the control simulation at ¢ = 48 hours
and ¢ = 96 hours. Also shown is the minimum value of the
geopotential gradient for which gradient balanced tangential winds
exist (3¢/or)..

tangential winds provide estimates of the time evo-
lutions of the gravity and geostrophic modes. In the
control simulation the time evolutions of the radial
and tangential winds are quite similar in that it
required about 96 hours for the intense radial and
tangential circulations shown in Fig. 2b to develop.
The radial wind does not show any significant am-
_plitude higher frequency oscillations, which indicates
that the time scale of the gravity modes is the same
as the time scale of the geostrophic modes, rather
than the time scale of the gravity mode frequencies
(Ymns» s = 1, 2) which have corresponding periods
ranging from about 16 hours to 90 seconds. Assuming
that the slow manifold is defined by the time scale of
the geostrophic modes, the above results suggest that
the model state in the control simulation does remain
close to the slow manifold.

4. Adiabatic initialization

Tribbia (1981) has shown in a highly truncated
axisymmetric spectral model that adiabatic geopoten-
tial constrained NNMI is equivalent to obtaining the
tangential wind from the geopotential using the gra-
dient wind equation. Thus, the application of the M-
scheme results in a vortex in gradient wind balance
with no radial wind.

This was verified using the current model where
the M-scheme was applied to the results from the
control simulation at z; = 0, 48 and 96 hours. For

MARK-DEMARIA AND WAYNE H. SCHUBERT

1231

the adiabatic initialization, all the gravity modes were
set to zero, and then diagnosed using (2.16), where
the N,,,, term was calculated with the surface drag,
horizontal and vertical diffusion, and the diabatic
terms O3, O and Qj), all set to zero. In each case
the iteration converged quite rapidly (B was reduced
by at least ten orders of magnitude after eight itera-
tions), and the resulting solutions contained a zero
radial wind and a vortex in gradient wind balance.

In the scheme applied by Tribbia, the geopotential
was held constant (constrained initialization). In the
unconstrained initialization used here, both the wind
and mass fields can vary during the initialization.
The unconstrained adiabatic initialization produced
very small changes in the tangential wind (rms differ-
ences between the initialized and uninitialized tan-
gential winds were less than 0.7 m s™! for £; = 0, 48
or 96 hours), and adjusted the mass field to obtain
gradient balance.

5. Diabatic initialization

Although the M-scheme converged for the adiabatic
case, the initialization did not produce a radial wind
field. In this section, the M-scheme is applied to the
results from the control simulation at #; = 48 and 96
hours for the case where the friction and mass
transport terms are included in the nonlinear forcing.
The only terms which are not included in the nonlin-
ear forcing for this case are the fourth-order diffusion
terms, since they result in a rapid divergence of the

100 T T T T |

BG or AG

0.000! ] 1 L L
0 24 48 72 96

t (hrs)

FIG. 5. The time evolution of the summation of the squares of
the gravity mode time tendencies (Bg) and the product of the
gravity mode amplitudes and frequencies (4¢) for the control
simulation.

|
120 144
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M-scheme. This divergence occurs because for the
fourth-order diffusion there is a term of the form
k3, W,.s (Where \ is the fourth-order diffusion
coefficient) included in the N, term in (2.16).
For some of the high wavenumber modes, the factor
Akd . /vmns 15 greater than one, so the gravity mode
amplitudes are increased by each iteration.

The solid lines in Fig. 6 show the parameter Bg
after each iteration of the M-scheme at t; = 48 and
96 hours. This figure shows that the value of Bg
decreases initially, but eventually increases and the
iterative solution diverges. This result is somewhat
different from the results presented by DeMaria and
Schubert (1984) who showed that the M-scheme
converged in a three-layer tropical cyclone model
with similar moist physics. As discussed in Section 2,
however, the boundary layer was assumed to have a
constant thickness in this previous study, so that the
modes which described most of the inflow in the
boundary layer could not be initialized. Because of
this, the boundary layer inflow, and thus the convec-
tive forcing term Q3),, was specified before the ini-
tialization procedure was applied. However, the con-
vergence of the iteration obtained in the previous
study no longer occurs for the case when the initial-
ization procedure interacts with the cumulus param-
eterization scheme. .

As described in Section 2, Kitade (1983) has sug-
gested a modification to the M-scheme which appears
to improve its convergence properties. The K-scheme

10 T T T T T
1.0
(o }]
(O]
o
0.0t
t. =48 hrs.
0.00! ! —
”=_0£ —
0.000! ) L L L
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{TERATION NUMBER

FiG. 6. The summation of the squares of the gravity mode time
tendencies (Bg) after each iteration of the M-scheme (solid) and
the K-scheme with w = 0.5 (dashed) for the diabatic initialization
of the control simulation at 7; = 48 and 96 hours, The points A
and B indicate the value of B; when the iteration was stopped in
the diabatic A and B procedures.
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defined by (2.17) was applied to the control simulation
with the under-relaxation parameter w = 0.5. The
dashed lines in Fig. 6 show the parameter Bg after
each iteration of the K-scheme. This figure shows
that the behavior of the K-scheme is quite similar to
the M-scheme, except that it diverges after a larger
number of iterations. The K-scheme does not reduce
B to a value lower than the minimum value obtained
by the M-scheme, so that it does not appear to be a
useful modification in this case.

The K-scheme was also applied with « = 0.75 and
w = 0.25. The results for these cases were similar to
the w = 0.5 case in that the divergence occurred after
a larger number of iterations than for the M-scheme,
but the minimum value of B; was not reduced.

Although the M-scheme eventually diverges, it can
be seen in Fig. 6 that the value of B; during the
iteration remains below its value in the control sim-
ulation until iteration 98 for f; = 48 hours and
iteration 14 for t; = 96 hours (indicated by the B
points on the solid curves). It may then still be
possible to use NNMI if the iteration is stopped when
B reaches some specified threshold. In this study,
two cases will be considered. The most obvious choice
is to stop the iteration as soon as By begins to
increase. As can be seen in Fig. 6, this occurs after
35 iterations for ¢; = 48 hours and after three iterations
for ¢; = 96 hours (indicated by the A points). This
procedure will be referred to as diabatic A. The
second case which is considered is to stop the iteration

‘when B reaches its value in the control simulation

after the point where Bs; was a minimum. This
procedure will be referred to as diabatic B.

Figure 7 shows the radial velocity components
after the diabatic A and diabatic B procedures were
applied at ¢; = 48 hours. Since the gravity modes
were set to zero initially, the radial winds are entirely
a result of the initialization procedures. Comparing
Fig. 7 with Fig. 2 it can be seen that the radial winds
are in qualitative agreement with those from the -
control simulation, in that there is strong inflow in
layer 0, weaker inflow in layer 1 and outflow in layer
2. It can also be seen that amplitudes of the radial
winds are close to those in the control simulation for
the diabatic B case, while they are underestimated
for the diabatic A case. _ :

Figure 8 shows the radial wind components after
the diabatic A and diabatic B procedures were applied
at t; = 96 hours. Comparing Fig. 8 with Fig. 2 it can
be seen that the results for ¢; = 96 hours are similar
to the results for f; = 48 hours, except that the
underestimation of the amplitudes of the radial winds
by the diabatic A procedure is more noticeable. This
indicates that in some cases it may be useful to
continue the iteration even though the value of Bg is
increasing. _ '

The above result shows that the amplitudes of the
radial wind fields are closer to those in the control
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FIG. 7. The radial wind () for layers 0, 1 and 2 as a function of
radius produced by the diabatic A, diabatic B and diabatic C
initializations of the control simulation at 7; = 48 hours.

simulation when the iteration is continued until Bg
reaches its value in the control simulation. If this
technique were applied in an operational model, the
threshold value of B; would not be known, so that a
different criterion would be necessary. One possibility
would be to continue the iteration until the integrated
diabatic heating produced by the model reaches some
specified threshold. In some cases it might be possible
to obtain the diabatic heating threshold from observed
precipitation rates which can be estimated from sat-
ellite observations (e.g., Adler and Rodgers, 1977). In
an operational model, however, the computing time
would also have to be considered, since at ¢; = 48
hours, the diabatic B procedure required 98 iterations.

The diabatic initialization procedures also resulted
in changes in the tangential wind and mass fields.
Similar to the adiabatic case, the changes in the
tangential wind were very small (less than 0.4 m s™!)
with the mass field adjusting towards gradient balance.

Although the radial circulations produced by the
initialization procedures are qualitatively similar to
those in the control simulation, it can be seen that
the maximum absolute values of u# occur at too large
a radius. Since the diabatic heating term Q3 is
parameterized in terms of the boundary layer con-
vergence, which is a function of u,, the resulting
initial diabatic heating fields are somewhat different
from those in the control run. Figure 9 shows the
mass transport term Q3 for the control simulation
and after the diabatic A and diabatic B procedures
were applied at f; = 48 and 96 hours. This figure
shows that at both times, the diabatic A procedure
underestimates the magnitude of Q3,; and the maxi-
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mum value occurs at too large a radius. The diabatic
B procedure increases the magnitude of Q3),, but the
maximum value still occurs at too large a radius.
The dashed vertical line RMW in Fig. 9 indicates
the radius of maximum layer 1 tangential wind. For
the control simulation, much of the diabatic heating
occurs inside the RMW while after the initialization
is applied, most of the heating occurs outside the
RMW. (The effect of the initialization on the RMW
is extremely small.) Schubert and Hack (1982) have
shown that diabatic heating produces balanced flow
more efficiently in inertially stable regions. Since the
inertial stability is proportional to the absolute vor-
ticity, it might be expected that the tropical cyclone
would intensify more rapidly when the diabatic heat-
ing occurred in regions where the absolute vorticity
is large. As can be seen in Fig. 3, the absolute vorticity
becomes very large inside the radius of maximum
wind. It might then be expected that the intensification
rate of the tropical cyclone would be reduced by the
initialization procedures since the diabatic heating
occurs away from the region where the absolute
vorticity is large. This will be verified in Section 6
when the model is run using the initialized fields.
The divergence of the M-scheme when physical
processes are included in the nonlinear forcing is
consistent with the results from global models (e.g.,
Williamson and Temperton, 1981). A technique used
to overcome this difficulty in the ECMWF operational
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FIG. 8. As in Fig. 7 except for ¢; = 96 hours.
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FIG. 9. The mass transport term O3, as a function of radius for
the control simulation and for the diabatic initializations of the
control simulation at f; = 48 hours and #; = 96 hours. The dashed

vertical line RMW indicates the radius of maximum layer 1 -

tangential wind.

model is to make the diabatic forcing independent of
the iteration (Wergen, 1983). For this purpose, the
time-averaged diabatic forcing terms are computed
during a two-hour forecast started from the uninitial-
ized analysis. If this technique were used in an
operational tropical cyclone model, the uninitialized
analysis would probably not contain divergent winds
near the storm center. Thus, in this study, the unin-
itialized analysis is taken to be a vortex in gradient
wind balance, obtained by applying the adiabatic M-
scheme to the control simulation. The model was
then run for 12 hours (two hours as used in the
ECMWF scheme was found to be inadequate to
produce significant amplitude forcing) and the average
diabatic forcing was computed. The M-scheme was
then applied using this average diabatic forcing in the
nonlinear term N,,,;. This procedure will be referred
to.as diabatic C.

When the diabatic C procedure was applied at ¢;
= 48 hours and ¢; = 96 hours, the iteration converged
about as rapidly as for the adiabatic initialization.
The radial winds produced by this scheme are shown
in Figs. 7 and 8. Comparing these figures with Fig. 2
shows that the diabatic C procedure provides a more

- accurate estimate of the radial winds than the diabatic
A or B procedures. The dot-dashed line in Fig. 9
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shows the mass transport term Q%), after the diabatic
C procedure was applied. For t; = 48 hours and ¢
=96 hours, the maximum value of 03, is much
closer to the RMW, which is more consistent with
the control simulation, Thus, at the expense of an
extra 12-hour model simulation, the diabatic C scheme
produces an initial heating field which is fairly close
to that in the control simulation.

6. Impact of initialization on the control simulation

As a simple test of the initialization procedures
discussed in the previous sections, the model is run
with the initialized fields and the results are compared
to the control simulation.

Figure 10 shows the difference in the minimum

- surface pressure from that in the control simulation

(AP;) for 48-hour model runs initialized using the
adiabatic, diabatic A, diabatic B and diabatic C
procedures. For #; = 48 hours in Fig. 10 it can be
seen that AP, is much smaller for the diabatic C
procedure than for the other initialization procedures
during the first 30 hours of the model simulations. A
similar result can be seen for #; = 96 hours during
the first 18 hours of the simulations.

The reason the simulations initialized using the
diabatic A and B procedures resulted in large differ-
ences in the surface pressure compared to the control
simulation appears to be related to the position of
the initial heating in relation to the RMW, as described

-previously, The differences for the adiabatic initial-

ization are caused by starting the simulation with
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FiGg. 10. The time evolution of the difference between the
minimum surface pressure in the control simulation and the
simulations initialized with the adiabatic and diabatic procedures
at t; = 48 hours and ¢; = 96 hours. A positive value of A P; indicates
a higher surface pressure in the initialized simulations.
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Q32 = 0. This indicates that the intensity of the
model tropical cyclone is extremely sensitive to the
initial radial distribution of the diabatic heating.
Although the diabatic A and B procedures result in
an initial diabatic heating field, the errors introduced
by these initializations are about as large as for the
adiabatic initialization. Thus, it appears that only the
diabatic C procedure is significantly better than ap-
plying an adiabatic initialization.

The time evolution of the minimum surface pres-
sure for the control simulation in Fig. 1 shows that
P, does not exhibit any large amplitude oscillatory
behavior. In Fig. 10, however, AP, does exhibit
oscillatory behavior in the first 24 hours after the
adiabatic, diabatic A and diabatic B initialization
procedures were applied. This suggests that the model
states after these initialization procedures were applied
were no longer close to the slow manifold. One
possible explanation is that the assumption of zero
gravity wave amplitude time tendencies (which gives
2.15) is not a good approximation to the slow manifold
in these cases. A second possibility is that (2.15) is a
valid approximation of the slow manifold, but that
the iterative procedures (2.16) or (2.17) do not provide
an accurate solution of this equation. These possibil-
ities will be studied using a highly truncated version
of the model.

7. Concluding remarks

The three-layer axisymmetric tropical cyclone
model presented by Ooyama (1969a,b) was used to
test the effect of NNMI on a tropical cyclone simu-
lation. For this purpose, Qoyama’s balance model
was written in terms of primitive equations and the
assumption of a constant depth boundary layer was
relaxed. For simplicity, the boundary layer equivalent
potential temperature treated as a prognostic variable
in Ooyama’s formulation was set to a constant. The
governing equations were solved using the spectral
(Galerkin) method with normal mode basis functions,
as described in Part 1. This made the application of
the NNMI procedure introduced by Machenhauer
(1977) straightforward.

A simulation of the development of a tropical
cyclone with maximum tangential winds of about 50
m s~' was used as a control for the NNMI. The
results from this simulation were used as initial data
so that the effect of NNMI could be evaluated by
comparing the initialized fields to the original fields.

When the diabatic forcing and friction terms were
not included in the nonlinear terms (adiabatic ini-
tialization) Machenhauer’s scheme converged quite
rapidly under tropical cyclone conditions. The adi-
abatic initialization resulted in zero radial winds (and
thus no initial vertical motion), changed the tangential
winds very slightly and adjusted the mass field to
obtain gradient balance.
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When the diabatic forcing and friction terms were
included in the nonlinear terms (diabatic initializa-
tion), Machenhauer’s scheme no longer converged.
The scheme was, howewver, capable of reducing the
time tendencies of the gravity modes below the level
of the tendencies in the control simulation. Thus,
although the initialization cannot reduce the initial
gravity mode time tendencies to zero, it can reduce
them to an acceptable level.

Kitade (1983) suggested a modification to Mach-
enhauer’s scheme to improve its convergence prop-
erties. It was shown that for Kitade’s modified scheme,
divergence occurred after a larger number of iterations,
but the minimum value of the gravity mode time
tendencies obtained was about the same as for Mach-
enhauer’s scheme. Thus, Kitade’s scheme does not
appear to be a useful modification for the diabatic
initialization of the tropical cyclone model.

When the diabatic initialization was stopped after
a specified number of iterations, the initialized fields
contained radial winds which were qualitatively similar
to those from the control simulation (strong boundary
layer inflow, weaker midlevel inflow and upper level
outflow). It was also shown that the amplitudes of
the initialized radial wind fields were closer to those
in the control simulation when the iteration was
continued beyond the point where the gravity mode
time tendencies were minimized. For this case, the
iteration was stopped when the tendencies reached
the level of the tendencies in the control simulation.

Although the radial wind field produced by the
diabatic initialization was qualitatively similar to that
in the control simulation, the resulting diabatic heating
field was somewhat different. Most of the diabatic
heating produced by the initialization occurred outside
the radius of maximum tangential wind while much
of the diabatic heating occurred inside the radius of
maximum wind for the control simulation. When
the model was run with the initialized fields, the
storm intensity decreased rapidly during the first 6—
12 hours of the simulations for adiabatic and the
diabatic initializations. This result indicates that the
straightforward application of Machenhauer’s initial-
ization scheme would probably be of limited useful-
ness in tropical cyclone models with parameterized
moist physics.

The diabatic initialization scheme used in the
ECMWF operational model (diabatic C) was also
tested. For this case, an adiabatic initialization was
first applied to the control simulation to achieve
gradient balance. The model was then run for 12
hours and the time-averaged diabatic forcing was
calculated. Using this diabatic forcing, the M-scheme
converged rapidly, and produced an initial radial
wind field which was more consistent with the control
simulation. Using this initialization, the intensity of
the vortex remained much closer to that in the
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" control simulation than for the other initialization
procedures.

The above result suggests that NNMI using the
time-averaged diabatic heating might be useful for
the initialization of operational tropical cyclone mod-
els such as the moveable fine mesh (MFM) model,
which contains parameterized moist physics (Hover-
male and Livezey, 1977). A disadvantage of the
diabatic C initialization is that it requires more
computational effort, since the model must be run
for about 12 hours to obtain the average diabatic
forcing. It remains to be seen whether this extra
computational effort would produce more accurate
track forecasts.

A difficulty which might occur in a three-dimen-
sional model which does not occur in the axisym-
metric model is related to the storm motion, If the
storm was moving, the time-averaged diabatic forcing
would be smoothed over some distance since at any
particular time it would be concentrated near the
storm center. It might be possible to overcome this
difficulty by holding the geostrophic modes fixed
during the initial 12-hour integration. When this was
done in the axisymmetric model, the radial circulation
produced by the initialization was very similar to that
produced when the geostrophlc modes were allowed
to vary. The advantage of this in a three-dimensional
‘model is that the storm should remain approximately
stationary during the initial integration.

Ooyama’s model was used in this study because of
its simplicity. In addition, the normal mode spectral
solution made the NNMI fairly simple to apply. In a
model such as the MFM, which is solved using finite
differencing and has time-dependent lateral boundary
conditions, the initialization would be considerably
more difficult to apply. It may be possible, however,
to overcome these difficulties as shown by Temperton
and Williamson (1981) who determined the normal
modes of a global grid point model, and by Briere
(1982) who applied NNMI in a limited area model.
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