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[1] We define the f-plane, y-independent, potential vorticity (PV) invertibility principle
as a coupled pair of first-order partial differential equations relating the balanced
wind and mass fields to the known PV. Analytical solutions of this invertibility princi-
ple are derived for cases in which an isolated PV anomaly is confined within a region
of the vertical plane. The solutions aid in understanding the dynamics of low-latitude
PV intrusions whose associated cloud patterns are often referred to as cloud surges, or
moisture bursts, and whose flow patterns are often referred to as tropical upper tropo-
spheric troughs. The existence of such tongues of high PV air intruding into the upper
troposphere is documented using reanalysis data from the ‘‘Year’’ of Tropical Convec-
tion data set. The solutions illustrate the phenomenon of isentropic upglide below an
upper tropospheric positive anomaly in PV. They also quantify how the partitioning
of PV between absolute vorticity and static stability depends on the shape and strength
of the PV anomaly. With slight modifications, the solutions apply to the problem of
determining the balanced flow induced by a surface temperature anomaly, which is
equivalent to a very thin layer of infinite PV at the surface. Through numerical solu-
tions of the fully nonlinear invertibility principle we provide justification for the ane-
lastic-type approximation used in the analytical theory.

Citation: Masarik, M. T., and W. H. Schubert (2013), Analytical solutions of the potential vorticity invertibility principle, J. Adv.
Model. Earth Syst., 5, 366–381, doi:10.1002/jame.20011.

1. Introduction

[2] In the boreal fall, winter, and spring the upper tro-
posphere in the eastern Pacific differs from most of the
tropical belt in the sense that it contains westerly rather
than easterly winds. This background westerly flow is
favorable for the equatorward propagation of midlati-
tude Rossby waves [Webster and Holton, 1982; Hoskins
and Ambrizzi, 1993; Tomas and Webster, 1994]. Clima-
tologies of the intrusions of extratropical air into the
tropical upper troposphere have been produced by
Iskenderian [1995], Postel and Hitchman [1999], Waugh
and Polvani [2000], and Waugh and Funatsu [2003].
These studies show that in the eastern Pacific such events
produce narrow tongues of high potential vorticity (PV)
that have an almost north–south orientation and last for
several days. Most of these PV structures extend up into
the lower stratosphere but only a small percentage pene-
trate deeply downward. A phase-shifted (i.e., each
trough line shifted to 140�W) composite of 103 cases has
been produced by Waugh and Funatsu [2003] and is
shown in Figure 1, which hints that such Rossby wave

breaking can be enhanced by steep PV gradients found
upstream [Scott et al., 2004]. Low-latitude PV intrusions
are also important in understanding many other aspects
of tropical dynamics, such as stratosphere-troposphere
exchange [Holton et al., 1995; Juckes, 1999; Scott et al.,
2001], the structure of the tropical tropopause [Gettel-
man and Birner, 2007; Gettelman et al., 2009; Fueglistaler
et al., 2009], and the distributions of humidity, cloud,
and ozone [Kiladis and Weickmann, 1992; Kiladis, 1998;
Juckes and Smith, 2000; Hoskins et al., 2003; Waugh,
2005; Kley et al., 2007; Funatsu and Waugh, 2008].

[3] An example of a low-latitude PV intrusion
occurred in January 2009, during an intensive data
analysis period called the ‘‘Year’’ of Tropical Convec-
tion (YOTC). The YOTC data set consists of 2 years of
European Centre for Medium-Range Weather Fore-
casts reanalysis fields from 1 May 2008 to 30 April
2010. Because PV intrusions can be as narrow as 200
km [Appenzeller and Davies, 1992], data with high hori-
zontal resolution is needed. The YOTC data are avail-
able on a latitude/longitude grid having 0.25� 3 0.25�

resolution and on 15 pressure levels between the surface
and 100 hPa. The PV intrusion event started around
10 January 2009 and lasted nearly a week. The time se-
ries for this event is shown in Figure 2. At 0000 UT on
10 January 2009, a wave in the 250 hPa PV field is start-
ing to develop near the date line and 30�N. Over the
next 36 h the intrusion pushes southward and has
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elevated values of PV at its tip, between 15�N and
20�N. During this time the Hawaiian Islands experi-
enced a Kona storm, bringing heavy rain and westerly
winds where the northeast trades normally prevail. At
0000 UT on 12 January 2009, the intrusion starts to
weaken and become a filament, and by 1200 UT a vor-
tex is seen to have developed within the filament just
north of Hawaii. These ‘‘subfilament’’ scale structures
were identified by Scott et al. [2001] and studied via a
nonhydrostatic mesoscale model as well as the tech-
nique of contour advection with surgery, developed by
Dritschel [1989]. The mesoscale structure of filaments
was also discussed by Appenzeller et al. [1996], who pro-
duced a schematic of archetypal PV streamer patterns.
According to their classification, the intrusion described
here can be identified as a Type II streamer (i.e., a
streamer with a north–south orientation), with the rem-
nants of a decaying intrusion to the east being a Type I
streamer (i.e., a streamer that arches around the neigh-
boring anticyclone to form an elongated band of high
PV with a northeast–southwest orientation). During the
next 2 days the intrusion continues to stretch out along
its axis, reaching as low as 10�N. At 1200 UT on 16 Jan-
uary 2009 (not shown, but further discussion can be
found in Masarik [2012]), the filament starts to
strengthen and grow slightly in width, maintaining its
north–south orientation while moving eastward and
making landfall on the west coast of North America.

[4] A vertical cross section of this event, early in its
development at 0600 UT on 11 January 2009, is shown
in Figure 3. Figure 3 (top) shows the intrusion with its
tip at 20�N and having values near 7–8 potential vortic-
ity units (PVU) along much of its length. The heavy

black line indicates the location of the cross section taken
at 30�N from 180�W to 150�W. Figure 3 (bottom) shows
a vertical cross section of PV, meridional wind, and poten-
tial temperature. There is a region of anomalously high
PV protruding downward into the troposphere, reaching
as far as 600 hPa with approximately 2 PVU and having
values of 7–8 PVU in its core. Flanking the sides of the
anomaly are jets which have a high degree of symmetry in
both shape and magnitude. These circulation anomalies
reach their maximum on the edges of the PV anomaly. On
the right side the northward velocity has a maximum of 60
m s21 and on the left side a small core reaches a minimum
of 270 m s21. Underneath the anomaly the surfaces of
potential temperature are drawn upward, which is seen
most easily in the 300 and 310 K isentropes.

[5] The goal of the present work is to better under-
stand the dynamics of such PV intrusions through the
derivation of simple analytical solutions of the PV
invertibility principle. This paper is organized as fol-
lows. The invertibility principle in isentropic coordi-
nates is derived in section 2. Section 3 presents simple
analytical solutions of this invertibility principle for
both thin and thick lenses of PV in the upper tropo-
sphere. Section 4 shows how the analytical solutions
also apply to the problem of surface temperature gra-
dients or equivalently the problem of infinite PV in a
very thin layer at the surface. Section 5 presents numeri-
cal solutions of the invertibility principle and discusses
the effects of the anelastic-type density approximation
that is used in the derivation of the analytical solutions.
Concluding remarks are given in section 6.

2. Invertibility Principle in Terms of
Cauchy-Riemann Conditions

[6] Consider a dry, geostrophically balanced flow
that is entirely in the y direction. Using potential tem-
perature h as the vertical coordinate and denoting the y
component of the flow by v x; hð Þ, the PV for the y-
independent flow on an f-plane is denoted P x; hð Þ
and given by

P5 f 1
@v

@x

� �
2

1

g

@p

@h

� �21

; (1)

where f is the constant Coriolis parameter, g is the accel-
eration of gravity, and p x; hð Þ is the pressure. The do-
main is considered infinite in x, but with wind field and
mass field anomalies localized near the origin, so that
v! 0 and p! ~p hð Þ as x! 61, where ~p hð Þ is the speci-
fied far-field vertical profile of pressure. In the far-field
the vertical profile of PV is denoted ~P hð Þ and given by

~P5f 2
1

g

@~p

@h

� �21

: (2)

Defining the Exner function by P pð Þ5cp p=p0ð Þj and
denoting the density by q x; hð Þ and the far-field density
by ~q hð Þ, it is easily shown that hq dP=dpð Þ51 and

Figure 1. Composite low-latitude PV intrusion (the
thick PV contours are labeled in PVU) over the North
Pacific on the 350 K isentropic surface. Thin contours
show the outgoing longwave radiation, with the shaded
regions indicating values less than 240 W m22, which is
typical of tropical convection. The tropical convection
just east of the high PV intrusion is associated with the
isentropic upglide process. Adapted from Waugh and
Funatsu [2003]. Copyright by American Meteorological
Society, and used with permission.
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Figure 2. Time series of PV on the 250 hPa surface, shown every 12 h starting at 0000 UT on 10 January 2009.
The color bar at the bottom indicates the values of PV in PVU.
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Figure 3. A high PV intrusion in an early stage. (top) PV on the 250 hPa surface at 0600 UT on 11 January 2009.
The thick black line indicates the location of the vertical cross section shown in the lower panel. (bottom) PV (col-
ors), meridional velocity v (solid and dashed black lines every 10 m s21), and potential temperature h (white lines
every 10 K). The color bars indicate the PV values in PVU.
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h~q d ~P=d~p
� �

51, which allows the ratio of equations (1)
and (2) to be written in the form

f
P

~P
5 f 1
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@x

� �
@~p=@h
@p=@h

� �

5 f 1
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� �
~q d ~P=d~p
� �

@~p=@hð Þ
q dP=dpð Þ @p=@hð Þ

 !

5 f 1
@v

@x

� �
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� �

q @P=@hð Þ

 !
:

(3)

Equation (3) can also be written in the form

@ v1fxð Þ
@x

1
h2

cN2f qP

g2~q~P

 !
@P
@h

50; (4)

where we have defined the far-field buoyancy frequency
N hð Þ by

N2 hð Þ5 g2

h2
c

2
d ~P
dh

� �21

; (5)

with the constant hc denoting the center of the PV
anomaly. For simplicity we hereafter assume that the
buoyancy frequency N is a constant, so that integration
of equation (5) yields

~P hð Þ5Pc2
g2

h2
cN2

h2hcð Þ; (6)

where the constant Pc denotes the far-field value of
the Exner function at h5hc. Because of the relation
q5 p0= Rhð Þ½ � P=cp

� � 12jð Þ=j
, the factor q=~qð Þ in equation

(4) represents a weak nonlinear effect. In the analyti-
cal solutions of sections 3 and 4 we shall ignore this
weak nonlinear effect by making the approximation
q=~qð Þ51. In the numerical solutions of section 5 this

nonlinearity will be retained.
[7] Equation (4) and the thermal wind relation can

now be written in the form

@ v1fxð Þ
@x

1
h2

cN2fP

g2 ~P

@P
@h

50; (7)

@ v1fxð Þ
@h

2
1

f

@P
@x

50: (8)

We conclude that the governing equations of the
invertibility principle are the Cauchy-Riemann condi-
tions (7) and (8), which constitute a system of first-
order partial differential equations for v x; hð Þ and
P x; hð Þ given P x; hð Þ. It is also possible to eliminate P
between equations (7) and (8) to obtain a second-order
elliptic equation for v or to eliminate v to obtain a sim-
ilar second-order elliptic equation for P. However,
since section 3 involves P fields that are discontinuous,

it proves more convenient to work with the first-order
equations (7) and (8).

3. Solution of the Invertibility Principle

[8] In this section we consider PV fields given by

P

~P
¼

c if
x

a

� �2

þ gðh2hcÞ
hcNfb

� �2

< 1;

1 if
x

a

� �2

þ gðh2hcÞ
hcNfb

� �2

> 1;

8>>><
>>>:

(9)

where the constant c specifies the strength of the PV
anomaly within the elliptical patch whose center is at
x; hð Þ5 0; hcð Þ and whose shape is specified by the con-

stants a and b. To solve the invertibility problem for the
PV distribution given in equation (9) we must solve
equations (7) and (8) inside the ellipse with P=~P
replaced by the constant c, then solve equations (7) and
(8) outside the ellipse with P=~P replaced by unity, and
finally match the solutions for v and P along the ellipse.
To derive the solutions of equations (7) and (8) in the
outer region, it is convenient to use the elliptic coordi-
nates .;uð Þ, defined by

xþ i
gðh2hcÞ

hcNf

� �
¼ c coshð.þ iuÞ

x ¼ c cosh . cosu
gðh2hcÞ

hcNf
¼ c sinh . sinu

c ¼ ða22b2Þ1=2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(10)

if a > b (thin lens), or by

xþ i
gðh2hcÞ

hcNf

� �
¼ c sinhð.þ iuÞ

x ¼ c sinh . cos u
gðh2hcÞ

hcNf
¼ c cosh . sin u

c ¼ ðb22a2Þ1=2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(11)

if a < b (thick lens). Note that the top line in each
grouping is simply the complex form of the middle two
lines in the grouping. The elliptic coordinate lines form
a system of ellipses and hyperbolas. For example, for
the thin lens case, it is easily shown that

x2

c2 cosh2 .
1

g h2hcð Þ= hcNfð Þ½ �2

c2 sinh2 .
51; (12)

and

x2

c2 cos2 u
2

g h2hcð Þ= hcNfð Þ½ �2

c2 sin2 u
51; (13)
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so that the lines of constant . are ellipses and the lines
of constant u are hyperbolas (see Figure 4). The com-
plete family of ellipses is generated by allowing the coor-
dinate . to vary over the range 0 � . <1, while the
complete family of hyperbolas is generated by allowing
the coordinate u to vary over the range 0 � u � 2p. In
particular, the ellipse x=að Þ21 g h2hcð Þ= hcNfbð Þ½ �251,
which just encloses the region of anomalous PV, is speci-
fied by .5.05tanh21 b=að Þ 5 1

2
ln a1bð Þ= a2bð Þ½ �. As .

becomes very large, cosh. � sinh. � 1
2

e., so that the
lines of constant . approach circles with radius 1

2
ce., and

the lines of constant u approach the straight radials
u5tan21 g h2hcð Þ= hcNfxð Þ½ �.

[9] Inside the ellipse .5.0, the Cauchy-Riemann
equations are now equations (7) and (8), with P=~P
replaced by the constant c. Outside this ellipse the
Cauchy-Riemann equations are now equations (7) and
(8), with P=~P replaced by unity, and with the resulting
equations transformed to elliptic coordinates. Thus, the
detailed statement of the problem is

@ v1fxð Þ
@x

1
h2

cN2f c
g2

@P
@h

50;

@ v1fxð Þ
@h

2
1

f

@P
@x

50;

8>><
>>:

9>>=
>>; if . < .0;

@ v1fxð Þ
@.

1
hcN

g

@P
@u

50;

@ v1fxð Þ
@u

2
hcN

g

@P
@.

50;

8>><
>>:

9>>=
>>; if . > .0;

v! 0 and P! ~P as .!1;
v and P continuous across .5.0:

(14)

The validity of equation (14) in the region . > .0 can be
confirmed by forming @x=@.ð Þ � 7ð Þ1 @h=@.ð Þ � 8ð Þ and
using @x=@.ð Þ5 g= hcNfð Þ½ � @h=@uð Þ and then forming
@x=@uð Þ � 7ð Þ1 @h=@uð Þ � 8ð Þ and using @x=@uð Þ5

2 g= hcNfð Þ½ � @h=@.ð Þ. The final solutions for v and P
are obtained by solving equation (14) inside (. < .0)
and outside (. > .0) the PV anomaly and then requiring
v and P to be continuous along the ellipse .5.0. As is
easily confirmed by direct substitution, the solutions are

v x; hð Þ5 f c21ð Þb
ca1b

x if . � .0

ae.02. cos u if . � .0;

�
(15)

P x; hð Þ5 ~P hð Þ1 g f c21ð Þa
hcN ca1bð Þ

g h2hcð Þ
hcNfð Þ if . � .0

be.02. sin u if . � .0:

8<
:

(16)

Since the terms in the second lines of equations (15)
and (16) decay exponentially with ., the far-field
boundary conditions are satisfied. As is easily checked,
the v field, given by equation (15), and the P field, given
by equation (16), are continuous at .5.0. Thus, equa-
tions (15) and (16) are the desired solutions satisfying

the boundary and interface conditions. Note that we
have chosen to express the solutions in terms of the
independent variables x; hð Þ inside the PV anomaly and
in terms of the independent variables .;uð Þ outside the
PV anomaly. Of course, it is possible to express the sol-
utions entirely in terms of x; hð Þ or entirely in terms of
.;uð Þ, but such formulas are less compact than the

mixed forms (15) and (16).
[10] As an example, Figure 5 (top) shows the plots of

equations (15) and (16) for g59.8 m s22, f 5531025 s21,
N51:0331022 s21, hc5350 K, Pc5cp pc=p0ð Þj; pc5200
hPa, a5500 km, b/a52.30, and c58. In the construction
of Figure 5 (top), we have chosen to display isolines of v
and P (but labeled in terms of pressure) in x; hð Þ space.
Figure 5 (bottom) displays the same information, but
now as isolines of v and h in (x,p) space. Conversion from
the top representation to the bottom representation has
been accomplished by simple interpolation. The maxi-
mum value of the wind speed vmax occurs at the two
points on the left and right edges of the elliptical PV
anomaly, where x56a and h5hc, or equivalently where
.5.0 and u50; p. At these points, equation (15) yields

vmax 5f b
jc21j
c1b=a

� �
: (17)

Figure 4. Elliptic coordinates .;uð Þ, as defined in
equation (10) for the thin lens case a > bð Þ. The hori-
zontal axis is x and the vertical axis is g h2hcð Þ= hcNfð Þ,
with both axes labeled in kilometers. Lines of constant .
(blue) are ellipses, and lines of constant u (red) are hyper-
bolas. Both sets of curves have the same foci, located at
x; hð Þ5 6c; hcð Þ. Far from the origin, lines of constant .

are very nearly circles, and lines of constant u are very
nearly straight radials. The 20 selected values of u are 0�,
18�, 36�, … 342�.
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With the above choices of the constants f, a, b, and c we
obtain a maximum wind speed of vmax 539:0 m s21 at
200 hPa. Note that equation (17) implies that for large
c, the maximum wind speed is sensitive to the depth b
of the PV anomaly.

[11] Figure 6 shows the plots of equations (15) and
(16) for the same parameter values used in Figure 5,
except with the six values of c and b/a given in the first
six rows of Table 1. The three examples of cyclones
(c54, 8, 12) are shown on the left, while the three exam-
ples of anticyclones (c51/4, 1/8, 1/12) are shown on the
right. Like PV itself, both @v=@xð Þ and @P=@hð Þ are in
general discontinuous across the ellipse. However, four
locations on the ellipse are special. At .;uð Þ5 .0; p=2ð Þ
and .;uð Þ5 .0; 3p=2ð Þ, we find that the vorticity is con-
tinuous, but the stability experiences its largest jump.

Similarly, at .;uð Þ5 .0; 0ð Þ and .;uð Þ5 .0; pð Þ, we find
that the stability is continuous but the vorticity experi-
ences its largest jump. The dashed lines in Figure 6 are
lines along which @v=@xð Þ50 and @P=@hð Þ5 @ ~P=@h

� �
.

These four dashed lines divide the region outside the
ellipse into four subregions. Above and below the
ellipse, two subregions of enhanced vorticity and
reduced stability fan out vertically, while to the left and
right of the ellipse, two subregions of reduced vorticity
and enhanced stability fan out horizontally.

[12] One reason that the solutions (15) and (16) have
such a simple mathematical form is that N has been
assumed to be a constant. However, for PV anomalies
near the tropopause, the increased value of N in the
stratosphere should be taken into account since it has
an influence on the upward extension of the balanced
wind and mass fields, as can be seen in the numerical
results of Hoskins et al. [1985] and Thorpe [1986]. Their
results clearly show that the high static stability of the
stratosphere is associated with a locally reduced Rossby
penetration depth, so that the influence of an upper tro-
pospheric PV anomaly does not penetrate upward as
far into the stratosphere as it would in the absence of
enhanced stratospheric stability. This effect should be
kept in mind when examining the idealized, constant N,
analytical solutions presented here.

[13] The solutions (15) and (16) are useful for under-
standing how the PV is partitioned between vorticity
and static stability. For example, by differentiation of
equations (15) and (16) it can be shown that the dimen-
sionless isentropic absolute vorticity is given by

f 1 @v=@xð Þ
f

5
1

c1b=a

c 11b=að Þ if . < .0

c1b=a1 c21ð ÞF if . > .0;

�
(18)

and the dimensionless (inverse) static stability by

@P=@hð Þ
@ ~P=@h
� �5

1

c1b=a

11b=a if . < .0

c1b=a1 c21ð ÞF if . > .0;

�
(19)

where

F .;uð Þ5e.02.

b

c

cosh. sin2u 2 sinh. cos2u

cosh2. sin2u 1 sinh2. cos2u

 !

if a > b

b

c

sinh. sin2u 2 cosh. cos2u

sinh2. sin2u 1 cosh2. cos2u

 !

if a < b:

8>>>>>>><
>>>>>>>:

(20)

Note that equation (18) divided by equation (19) yields

f 1 @v=@xð Þ
f

� �
@ ~P=@h
@P=@h

� �
5

c if . < .0

1 if . > .0;

�
(21)

which is the normalized version of equation (3). Using
the top lines of equations (18) and (19) in equation (21),

Figure 5. (top) Cross section of wind speed v x; hð Þ and
pressure p x; hð Þ for a cyclone centered at h5350 K and
the PV parameter c58. Wind speed (color) is contoured
every 4 m s21, and pressure (lines) is contoured every 50
hPa. (bottom) Same information in the more conven-
tional form v(x,p) and h(x,p), with the potential temper-
ature values contoured every 4 K.
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Figure 6. Cross-section plots of wind speed (v, colors) and potential temperature (h, lines) for PV anomalies with
six selected values of the PV parameter c. Cyclones of increasing intensity are shown in the left column (c54, 8,
12), and anticyclones of increasing intensity are shown in the right column (c51/4, 1/8, 1/12). Wind speed values
are contoured every 4 m s21, and potential temperature values are contoured every 4 K. The region of enhanced
PV is outlined by the thick black ellipse, whose shape is defined by a5500 km and by the first six values of b/a
given in Table 1.
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we can easily see that within the ellipse the partitioning
of the dimensionless PV between the absolute vorticity
and the static stability is

c 11b=að Þ
c1b=a

� �
c1b=a

11b=a

� �
5c;

so that the partitioning depends only on c and b/a. In
this sense, all PV anomalies with the same c and the
same b/a are dynamically similar. For the example
shown in Figure 5, c58 and b=a52.30, so that the parti-
tioning is 2:56ð Þ 3:12ð Þ5 2:83ð Þ258, i.e., the PV inversion
in this case is biased toward stability, with a dimension-
less absolute vorticity of 2.56 and a dimensionless sta-
bility of 3.12, while an equipartition would result in
both the dimensionless absolute vorticity and the
dimensionless stability taking on the value 2.83.

[14] Another way to quantify the partitioning is
through the ratio

a c; b=að Þ5 f 1@v=@xð Þ=f

@ ~P=@h
� �

= @P=@hð Þ
5

c 11b=að Þ2

c1b=að Þ2
: (22)

Figure 7 shows the isolines of a c; b=að Þ as a function of
c and b/a. Cases with a > 1 are vorticity biased, while
cases with a < 1 are stability biased. The six cases
shown in Figure 6 and detailed in the first six rows of
Table 1 are indicated by the six triangles in Figure 7.
For these six cases, the cyclones are stability biased and
the anticyclones are vorticity biased. The last six rows
of Table 1 detail the six other cases indicated by the
squares in Figure 7. For these six cases, the situation is
reversed in the sense that the cyclones are vorticity bi-
ased and the anticyclones are stability biased. More
extreme biasing, such as indicated by the cross and dia-
mond symbols in Figure 7, seem possible, although it

should be noted that the largest values of c and b/a are
associated with PV fields that are so intense and so deep
(for typical values of a) that they can result in unrealisti-
cally strong winds.

[15] The results shown in Figure 6 are in general
agreement with the observational results of Kelley and
Mock [1982], Whitfield and Lyons [1992], and Price and
Vaughan [1992], who have found that tropical upper
tropospheric troughs are cold core cyclones confined to
the layer between 100 and 700 hPa, whose typical hori-
zontal scale is on the order of several hundred kilo-
meters. The coldest temperature anomaly in the trough
occurs near 300 hPa with the maximum cyclonic circu-
lation near 200 hPa. Troughs typically last for less than
5 days but may, in some cases, persist for nearly 2
weeks. In addition, these systems often move to the
southwest and are characterized by subsidence and min-
imum cloudiness in their northwest quadrant and ascent
and maximum cloudiness in their southeast quadrant.

[16] A common feature of moisture plumes is the sharp
edge of the cloud field on its northwest side. This is con-
sistent with the moderate and strong cyclone cases shown
in Figure 6 (left). Strong upgliding motions tend to occur
on isentropic surfaces that intersect the lower half of the
elliptically shaped PV anomaly. The upgliding motion
ends abruptly where the isentropic surfaces become hori-
zontal inside the PV anomaly. Thus, the sharp edge of
the cloud field on its west side can be interpreted as the
western extent of the isentropic upglide region and the
eastern extent of the PV anomaly.

[17] The isentropic upglide cases shown in Figure 6
are examples of vertical p-velocities produced by invis-
cid adiabatic processes. Can such vertical velocities be
as strong as those produced by deep convective heating
in the Intertropical Convergence Zone (ITCZ)? In the
strong cyclone case the isentropic upglide effect in the
region just below the elliptical PV anomaly is approxi-
mately 100 hPa/1000 km. For a relative easterly flow of
10 m s21, this corresponds to 100 hPa/105 s, or an
ascent rate of 116 hPa d21, a value approximately equal

Table 1. Test Cases of Cyclonic and Anticyclonic PV Anomaliesa

c b/a vmax (m s21)
f 1 @v=@xð Þ

f

� �
@ ~P=@h
@P=@h

� �
5c a c; b=að Þ

12 2.84 52.6 3:11ð Þ 3:86ð Þ5 3:46ð Þ2512 0.804
8 2.30 39.0 2:56ð Þ 3:12ð Þ5 2:83ð Þ258 0.820
4 1.59 21.3 1:85ð Þ 2:16ð Þ5 2:00ð Þ254 0.858

1/4 0.316 10.5 :581ð Þ :430ð Þ5 :500ð Þ251=4 1.35
1/8 0.198 13.4 :463ð Þ :270ð Þ5 :354ð Þ251=8 1.72
1/12 0.148 14.6 :413ð Þ :202ð Þ5 :289ð Þ251=12 2.05

12 4.14 70.5 3:82ð Þ 3:141ð Þ5 3:46ð Þ2512 1.22
8 3.41 52.3 3:09ð Þ 2:588ð Þ5 2:83ð Þ258 1.19
4 2.46 28.6 2:14ð Þ 1:867ð Þ5 2:00ð Þ254 1.15

1/4 0.754 14.1 :437ð Þ 0:572ð Þ5 :500ð Þ251=4 0.763
1/8 0.594 18.1 :277ð Þ 0:451ð Þ5 :354ð Þ251=8 0.614
1/12 0.526 19.8 :209ð Þ 0:399ð Þ5 :289ð Þ251=12 0.523

aNumerical values of the PV magnitude c (first column), the shape b/a (second column), the maximum wind (third column), the PV partition-
ing (fourth column), and the values of a c; b=að Þ (fifth column) are tabulated. The values of vmax are determined from equation (17), the PV parti-
tioning from equations (18) and (19), and the values of a c; b=að Þ from equation (22). Cyclones (c > 1) range from the strongest (c512) to the
weakest (c54), and anticyclones (c<1) range from the weakest (c51=4) to the strongest (c51=12). The last six rows of the table correspond to
the six squares in Figure 7, while the first six rows correspond to the six triangles in Figure 7 and to the solutions shown in Figure 6. Note that
for each set of six rows, the different b/a values were chosen so that the resulting elliptical PV anomalies given by equation (9) were approxi-
mately the same shape and size in (x, p) coordinates.
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to that observed in the western Pacific ITCZ [e.g., see
Yanai et al., 1973, Figure 3]. In addition, as discussed
by Hoskins et al. [1985], there are two types of isen-
tropic upglide: the first due to easterly relative flow
below and east of an upper tropospheric PV anomaly;
and the second due to southerly flow up an isentropic
surface on the east side of the PV anomaly. The upglide
by the second process can often be more important
because of strong southerly flow and a long fetch along
an isentropic surface that tilts upward toward the pole.

[18] In concluding this section we note that an inter-
esting special case occurs when c! 0, which means
that the PV is zero inside the ellipse. Equations (15) and
(16) then reduce to

v x; hð Þ52f
x if . � .0

ae.02. cos u if . � .0;

�
(23)

P x; hð Þ5 ~P hð Þ2 gfa

hcN

g h2hcð Þ
hcNfb

if . � .0

e.02. sin u if . � .0:

8<
: (24)

Note from equation (23) that the isentropic absolute vor-
ticity f 1 @v=@xð Þ vanishes in the ellipse. Also note from
equation (24) that @P=@hð Þ5 11 a=bð Þ½ � @ ~P=@h

� �
. This

zero PV case, described by equations (23) and (24), is sim-
ilar in certain respects to the homogeneous intrusion case
of Gill [1981], who studied the final geostrophically
adjusted flow that occurs after a finite volume of constant
temperature water is intruded into a uniformly rotating
stratified ocean. This theoretical problem was motivated

by the fortuitous discovery of Mediterranean eddies (or
Meddies), as originally described by McDowell and
Rossby [1978] and later reinterpreted by Prater and
Rossby [2000]. However, it should be noted that the zero
PV solution described here has nonvanishing stability
and vanishing isentropic absolute vorticity, while Gill’s
zero PV solution has vanishing stability and nonvanish-
ing isentropic absolute vorticity.

4. Surface Gradients

[19] The discussion in section 3 concerns interior PV
anomalies. However, the solutions (15) and (16) can
also be interpreted in terms of surface-based massless
layers of infinite PV. To see this, consider the case in
which the center of the ellipse is placed at the surface
(i.e., hc5300K, Pc5cp pc=p0ð Þj, and pc5p051000 hPa),
and the PV inside the ellipse is allowed to become very
large (i.e., c!1). Equations (15) and (16) then reduce
to

v x; hð Þ5f b
x=a if . � .0

e.02.cosu if . � .0;

�
(25)

P x; hð Þ5Pc2
gf b

hcN

0 if . � .0

g h2hcð Þ
hcNfb

2e.02. sin u if . � .0:

8<
:

(26)

Note from equation (26) that P and hence p are con-
stant in the ellipse (the massless layer).

[20] Figure 8 (top) shows the isolines of v x; hð Þ
and p x; hð Þ, computed from equations (25) and (26)
for the parameters g59.8 m s22, f 5531025 s21,
N51:0331022 s21, a5500 km, and b5634 km, which
correspond to a warm surface potential temperature
anomaly of magnitude hcNfb=g510 K. Figure 8 (bot-
tom) displays the same information but in the more
conventional form v(x,p) and h x; pð Þ. Note that the
half-ellipse region in Figure 8 (top) is the massless layer
and that it becomes infinitesimally thin in Figure 8 (bot-
tom). For the chosen parameters, the peak wind anom-
aly is 31.7 m s21. The specified 10 K surface potential
temperature anomaly allows for a rough comparison of
the present analytical results with the numerical results
shown in Hoskins et al. [1985, Figure 16a] and in Thorpe
[1986, Figure 4]. The results are qualitatively similar but
differ quantitatively in an expected way when one notes
that the present analytical results are for line symmetry
and geostrophic balance, while their numerical results
are for circular symmetry and gradient balance.

5. Numerical Solutions

[21] When the invertibility principle is solved using fi-
nite difference methods, it is unnecessary to make the
approximation q=~qð Þ51. Thus, in order to analyze the
errors associated with this approximation, we now solve
a finite difference version of the invertibility problem

Figure 7. Isolines of a c; b=að Þ, as defined in equation
(22). PV inversion is vorticity biased for cases in which
a>1 (red/orange) and stability biased for cases in which
a<1 (blue/green). The six triangles correspond to the six
cases detailed in the first six rows of Table 1 and shown
in Figure 6, while the six squares correspond to the six
cases detailed in the last six rows of Table 1.
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using an iterative method. Returning to equation (1) and
making use of the geostrophic relation fv5 @M=@xð Þ and
the hydrostatic relation P5 @M=@hð Þ, we obtain equa-
tion (27), where M5hP1/ is the Montgomery poten-
tial, / is the geopotential, and the density q is given in
terms of M by equation (28). Note that the appearance
of q (as opposed to ~q) in equation (27) retains the previ-
ously discussed weak nonlinearity, which is easily incor-
porated into the iterative method. To obtain the lateral
boundary conditions (29) we have assumed that the far-
field (i.e., x56L) value of M is equal to the specified
function ~M hð Þ. To obtain the upper boundary condition
(30) we have assumed that the upper isentropic surface
(h5hT ) is also an isobaric surface with a constant Exner
function PT . To formulate the lower boundary condi-
tion (31) we have assumed that the geopotential vanishes

along the lower isentropic surface, i.e., M2hP50 at
h5hB. In summary, the elliptic problem is

g

f hqP
f 21

@2M

@x2

� �
1
@2M

@h2
50; (27)

q5
p0

Rh
1

cp

@M

@h

� � 12jð Þ=j
; (28)

M5 ~M hð Þ at x56L; (29)

@M

@h
5PT at h5hT ; (30)

M2h
@M

@h
50 at h5hB: (31)

To solve equations (27)–(31) for M x; hð Þ, we must spec-
ify the constants hB; hT ; PT , and L and the func-
tions P x; hð Þ and ~M hð Þ. In the following discussion we
shall compare numerical solutions of equations (27)–
(31) with numerical solutions of a system that is identi-
cal except that equation (28) is replaced by q5~q. These
comparisons will allow us to better understand the
errors associated with the q=~qð Þ51 approximation used
in section 3.

[22] To discretize equation (27) we use centered finite
difference approximations on the grid points
xj; hk

� �
5 2L1jDx; hB1kDhð Þ with j50; 1;…; J and

k50; 1;…;K , where Dx52L=J and Dh5 hT2hBð Þ=K .
We solve the discrete equations using the following suc-
cessive overrelaxation (SOR) procedure. Denoting the
current solution estimate by Mj;k and sweeping through
the grid in lexicographic order, we first compute the
current estimate of density from

qj;k5
p0

Rhk

Mj;k112Mj;k21

cp2Dh

� � 12jð Þ=j
; (32)

and then the current residual of equation (27) from

rj;k5Mj;k211Mj;k1122 11Aj;k

� �
Mj;k

1Aj;k f Dxð Þ21Mj21;k1Mj11;k

h i
;

(33)

where

Aj;k5
g Dhð Þ2

f hkqj;kPj;k Dxð Þ2
: (34)

The solution estimate is then updated by

Mj;k  Mj;k1
xrj;k

2 11Aj;k

� � ; (35)

Figure 8. (top) Cross section of wind speed v(x,h) and
pressure p(x,h) for a cyclone centered at the surface and
for the PV parameter c!1. Wind speed (color) is con-
toured every 4 m s21, and pressure (lines) is contoured
every 50 hPa. (bottom) Same information in the more
conventional form v(x,p) and h (x,p), with the potential
temperature values contoured every 4 K.
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where x is the overrelaxation factor, and equations
(32)–(35) are computed at the grid points 1 � j �
J21; 1 � k � K21. Finally, the top and bottom
boundary points are updated from the boundary condi-
tions written in the form

Mj;K5Mj;K211PTDh for 1 � j � J21; (36)

Mj;05
hB

hB1Dh

� �
Mj;1 for 1 � j � J21: (37)

Equations (32)–(37) are iterated, starting with the initial
estimate Mj;k5 ~M hkð Þ. This initial estimate does not
change on the lateral boundaries j50 and j5J.

[23] For the numerical solutions presented here, we
have used the domain 22000 � x � 2000 km and
295 � h � 415 K and a grid with J5400 and K5300,
resulting in the grid spacing Dx510 km and
Dh5120=30050:4 K. Note that equation (33) is iso-
tropic on the grid if Aj,k equals unity. Although such
strict isotropy is obviously impossible, the pointwise
SOR procedure works better if Dh=Dx is chosen so that
Aj,k does not depart drastically from unity. Using typi-
cal values of the quantities on the right-hand side of
equation (34), we find that our choice Dh=Dxð Þ5
0:4Kð Þ= 10kmð Þ is reasonable in this regard.

[24] In order to gauge the convergence rate, we have
monitored the norm of the residual as iteration pro-
ceeds. Experience shows that with the optimal value of
the overrelaxation factor x, this norm can be reduced
by six or seven orders of magnitude in 1000 iterations,
which is well beyond the accuracy required for present
purposes. Based on the numerical tests, an overrelaxa-
tion factor of 1.98 has been used.

[25] In the analytical model of sections 3 and 4 the
specified PV contains a discontinuity at the edge of the
elliptically shaped anomaly. For the numerical solu-
tions we modify this specification from equation (9) to

P

~P
5

c if 0 � . � .1;

cS
.2.1

.22.1

� �
1S

.22.
.22.1

� �
if .1 � . � .2;

1 if .2 � . <1;

8><
>:

(38)

so that there is a smooth transition between the anom-
aly and the background field. In equation (38) the vari-
able . is the pseudo-radius of the elliptical coordinate
system, and the smoothing function is defined by
S sð Þ5123s212s3. Note that S 0ð Þ51 and S 1ð Þ50, so
that the middle line of equation (38) evaluates to c when
.5.1, while it evaluates to 1 when .5.2. The derivatives
at these points are S0 0ð Þ50 and S0 1ð Þ50. From these
considerations it is clear that between .1 and .2 the PV
anomaly varies smoothly between c and 1. In the limit
.1 ! .2, definition (38) approaches definition (9).

[26] Figure 9 displays solutions to the problem (27)–
(31) with P given by equation (38). These solutions are
not directly comparable to those presented in Figure 6

for several reasons. First, the boundary conditions are
different. While the effect of the localized PV anomaly
simply decays with distance in the analytical model, the
numerical model obeys the boundary conditions (29)–
(31). Second, the density is approximated by the far-
field density in the analytical model. In the numerical
model we can work with either the unapproximated
density q x; hð Þ or the far-field density ~q hð Þ. Last, the
smoothed PV anomaly (equation (38)) is slightly differ-
ent than the discontinuous PV anomaly (equation (9)).
The idea then is to compare the numerical solutions
shown in Figure 9 with the density approximated nu-
merical solutions. The numerical solutions with the den-
sity approximation q5~q are displayed in Figure 10.
Comparing Figures 9 and 10, we see that the maximum
wind speeds are very similar. For the cyclones, the den-
sity approximated solutions are slower, with this effect
increasing as the intensity increases. The difference
between the cyclones for c512 is 3 m s21. For the anti-
cyclones the density approximated solutions are faster.
The difference in all the three cases is just 0.1 m s21.

[27] Qualitatively, the density approximated solutions
(Figure 10) do not have the upward flare of the jets seen
in the unapproximated solutions (Figure 9). The reason
for this behavior can be deduced from Figures 11 and
12, which are the plots of the difference in density and
the difference in wind speed, respectively, for a strong
cyclone (c512). Figure 11 shows that the density q is
approximately 0.1 kg m23 larger than ~q in the upper
half of the PV anomaly and is approximately
0.2 kg m23 smaller than ~q in the lower half of the PV
anomaly. Looking at the difference of v in Figure 12 we
see cyclonic flow in the upper region and anticyclonic
flow in the lower region. Thus, the effect of using the
actual density q instead of the approximate density ~q is
to shift the cyclonic circulation upward, creating the
flare of the isotachs that is seen in Figure 9. For the
anticyclone an analogous argument exists, and the anti-
cyclonic circulation is seen to be shifted upward as well.

6. Concluding Remarks

[28] The main results of this work are the simple ana-
lytical solutions of the PV invertibility principle pre-
sented in sections 3 and 4. To obtain these solutions,
isentropic coordinates were used to derive the Cauchy-
Riemann equations for the case of line symmetric, geo-
strophic flow. The solutions describe the wind and mass
fields both inside and outside a localized PV anomaly.
The solutions are valid for equatorward intrusions of
high PV as well as poleward intrusions of low PV. The
case of high PV intruding into low latitudes is of most
interest, due to the association with features in the
cloud field (moisture bursts, cloud surges) and in the
flow field (tropical upper tropospheric troughs), which
have important implications for transient convection in
the tropics as well as aiding in tropical cyclone develop-
ment. Some essential characteristics of the solutions for
high PV are the upgliding isentropes and cyclonic circu-
lation. In the case of low PV intrusions the isentropes
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Figure 9. Cross-section plots of wind speed (v, colors) and potential temperature (h, lines) for PV anomalies with
select values of the parameter c. Cyclones of increasing intensity are shown in the left column (c54, 8, 12), and
anticyclones of increasing intensity are shown in the right column (c51/4, 1/8, 1/12). Wind speed values are con-
toured every 4 m s21, and potential temperature values are contoured every 4 K. The region of enhanced PV (see
top line in equation (38)) is outlined by the dashed black ellipse, whose shape is defined by a5500 km and by the
first six values of b/a given in Table 1.

378

MASARIK AND SCHUBERT: SOLUTIONS OF THE INVERTIBILITY PRINCIPLE



were seen to bow outward from the PV anomaly, and
the circulation was anticyclonic. By differentiating the
solutions, analytical expressions can be obtained for the
partitioning of PV anomalies between the absolute vor-
ticity and the static stability. In the interior of the

anomaly this partitioning is a function only of the as-
pect ratio (b/a) and the magnitude (c). For cyclones, a
deep PV lens is expressed as a vorticity-biased anomaly,
and a shallow lens as a stability-biased anomaly. The
opposite is true for an anticyclone.

Figure 10. The conventions are the same as in Figure 9, though the density q, is set to the far-field value ~q.
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[29] In section 5, unapproximated versions of the
equations used in the analytical theory were solved
numerically. These numerical solutions provided a
means to analyze the effect of approximating the den-
sity by the far-field density. When the density is not
approximated, the equation set is weakly nonlinear,
whereas the form used in the analytical theory is linear.
In the numerical solutions the PV field is smoothed in
the region between the ellipse of anomalous PV and the
far-field. This smoothing aids the numerics but makes
more difficult the task of comparing the numerical and
analytical solutions. Because of this, as well as the use
of different boundary conditions, we do not directly
compare the numerical and analytical solutions.

Instead, we compare different numerical solutions for
runs with the density approximated and runs with the
density unapproximated. In terms of maximum wind
speed, these solutions demonstrate that the density
approximated cyclones are slightly slower. A qualitative
comparison finds that the unapproximated solutions
have a slight upward flare to the jets. This effect is due
to the under(over)estimation of density in the upper
(lower) region of the anomaly for the approximated
case and acts to shift the circulation upward. Based on
these small differences, we conclude that the analytical
solutions are useful both qualitatively and semiquanti-
tatively. With additional support from reanalysis data,
the analytical model is found to be a useful theoretical
tool for studying the flow field surrounding a PV
intrusion.

[30] In the analysis presented here we have neglected
the effects of topography and surface gradients of
potential temperature. Recently, Silvers and Schubert
[2012] have shown how these effects are crucial in
understanding the low-level jets that are topographi-
cally bound to the Andes. Inclusion of topography and
surface gradients of potential temperature in the present
analysis would provide a framework for studying the
flow fields that result when upper level and surface PV
anomalies interact with elevated terrain. Such a com-
bined model would be well suited to investigate the
flows associated with atmospheric river events making
landfall on western North America.

[31] In closing we note that the present analytical, line
symmetric, geostrophic solutions of the PV invertibility
principle provide a useful complement to the analytical,
circularly symmetric, geostrophic solutions of Eliassen
and Kleinschmidt [1957] and to the numerical, circularly
symmetric, gradient solutions of Hoskins et al. [1985]
and Thorpe [1986].
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